1
|
Hirsch EC, Vyas S and Hunot S:
Neuroinflammation in Parkinson's disease. Parkinsonism Relat
Disord. 18 Suppl 1:S210–S212. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Appel SH: Inflammation in Parkinson's
disease: Cause or consequence? Mov Disord. 27:1075–1077. 2012.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Qian L, Flood PM and Hong JS:
Neuroinflammation is a key player in Parkinson's disease and a
prime target for therapy. J Neural Transm (Vienna). 117:971–979.
2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ouchi Y, Yagi S, Yokokura M and Sakamoto
M: Neuroinflammation in the living brain of Parkinson's disease.
Parkinsonism Relat Disord. 15 Suppl 3:S200–S204. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Anderson KM, Olson KE, Estes KA, Flanagan
K, Gendelman HE and Mosley RL: Dual destructive and protective
roles of adaptive immunity in neurodegenerative disorders. Transl
Neurodegener. 3:252014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gao HM, Jiang J, Wilson B, Zhang W, Hong
JS and Liu B: Microglial activation-mediated delayed and
progressive degeneration of rat nigral dopaminergic neurons:
Relevance to Parkinson's disease. J Neurochem. 81:1285–1297. 2002.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Politis M, Su P and Piccini P: Imaging of
microglia in patients with neurodegenerative disorders. Front
Pharmacol. 3:962012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kaur C, Hao AJ, Wu CH and Ling EA: Origin
of microglia. Microsc Res Tech. 54:2–9. 2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Monif M, Reid CA, Powell KL, Smart ML and
Williams DA: The P2X7 receptor drives microglial activation and
proliferation: A trophic role for P2X7R pore. J Neurosci.
29:3781–3791. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ferrari D, Pizzirani C, Adinolfi E, Lemoli
RM, Curti A, Idzko M, Panther E and Di Virgilio F: The P2X7
receptor: A key player in IL-1 processing and release. J Immunol.
176:3877–3883. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Suzuki T, Hide I, Ido K, Kohsaka S, Inoue
K and Nakata Y: Production and release of neuroprotective tumor
necrosis factor by P2X7 receptor-activated microglia. J Neurosci.
24:1–7. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kataoka A, Tozaki-Saitoh H, Koga Y, Tsuda
M and Inoue K: Activation of P2X7 receptors induces CCL3 production
in microglial cells through transcription factor NFAT. J Neurochem.
108:115–125. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Gendron FP, Chalimoniuk M, Strosznajder J,
Shen S, González FA, Weisman GA and Sun GY: P2X7 nucleotide
receptor activation enhances IFN gamma-induced type II nitric oxide
synthase activity in BV-2 microglial cells. J Neurochem.
87:344–352. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Parvathenani LK, Tertyshnikova S, Greco
CR, Roberts SB, Robertson B and Posmantur R: P2X7 mediates
superoxide production in primary microglia and is up-regulated in a
transgenic mouse model of Alzheimer's disease. J Biol Chem.
278:13309–13317. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bartlett R, Yerbury JJ and Sluyter R: P2X7
receptor activation induces reactive oxygen species formation and
cell death in murine EOC13 microglia. Mediators Inflamm.
2013:2718132013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Monif M, Burnstock G and Williams DA:
Microglia: Proliferation and activation driven by the P2X7
receptor. Int J Biochem Cell Biol. 42:1753–1756. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Skaper SD, Facci L, Culbert AA, Evans NA,
Chessell I, Davis JB and Richardson JC: P2X(7) receptors on
microglial cells mediate injury to cortical neurons in vitro. Glia.
54:234–242. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sperlágh B and Illes P: P2X7 receptor: An
emerging target in central nervous system diseases. Trends
Pharmacol Sci. 35:537–547. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Durrenberger PF, Grünblatt E, Fernando FS,
Monoranu CM, Evans J, Riederer P, Reynolds R and Dexter DT:
Inflammatory pathways in Parkinson's Disease; A BNE microarray
study. Parkinson's Dis. 2012:2147142012.
|
20
|
Yiangou Y, Facer P, Durrenberger P,
Chessell IP, Naylor A, Bountra C, Banati RR and Anand P: COX-2, CB2
and P2X7-immunoreactivities are increased in activated microglial
cells/macrophages of multiple sclerosis and amyotrophic lateral
sclerosis spinal cord. BMC Neurol. 6:122006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ryu JK and McLarnon JG: Block of
purinergic P2X(7) receptor is neuroprotective in an animal model of
Alzheimer's disease. Neuroreport. 19:1715–1719. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Diaz-Hernández M, Díez-Zaera M,
Sánchez-Nogueiro J, Gómez-Villafuertes R, Canals JM, Alberch J,
Miras-Portugal MT and Lucas JJ: Altered P2X7-receptor level and
function in mouse models of Huntington's disease and therapeutic
efficacy of antagonist administration. FASEB J. 23:1893–1906. 2009.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Carmo MR, Menezes AP, Nunes AC, Pliássova
A, Rolo AP, Palmeira CM, Cunha RA, Canas PM and Andrade GM: The
P2X7 receptor antagonist Brilliant Blue G attenuates contralateral
rotations in a rat model of Parkinsonism through a combined control
of synaptotoxicity, neurotoxicity and gliosis. Neuropharmacology.
81:142–152. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Marcellino D, Suárez-Boomgaard D,
Sánchez-Reina MD, Aguirre JA, Yoshitake T, Yoshitake S, Hagman B,
Kehr J, Agnati LF, Fuxe K and Rivera A: On the role of P2X(7)
receptors in dopamine nerve cell degeneration in a rat model of
Parkinson's disease: Studies with the P2X(7) receptor antagonist
A-438079. J Neural Transm (Vienna). 117:681–687. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hracskó Z, Baranyi M, Csölle C, Gölöncsér
F, Madarász E, Kittel A and Sperlágh B: Lack of neuroprotection in
the absence of P2X7 receptors in toxin-induced animal models of
Parkinson's disease. Mol Neurodegener. 6:282011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lenertz LY, Gavala ML, Zhu Y and Bertics
PJ: Transcriptional control mechanisms associated with the
nucleotide receptor P2X7, a critical regulator of immunologic,
osteogenic, and neurologic functions. Immunol Res. 50:22–38. 2011.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Bhat NR, Zhang P, Lee JC and Hogan EL:
Extracellular signal-regulated kinase and p38 subgroups of
mitogen-activated protein kinases regulate inducible nitric oxide
synthase and tumor necrosis factor-alpha gene expression in
endotoxin-stimulated primary glial cultures. J Neurosci.
18:1633–1641. 1998.PubMed/NCBI
|
28
|
Jeohn GH, Cooper CL, Wilson B, Chang RC,
Jang KJ, Kim HC, Liu B and Hong JS: p38 MAP kinase is involved in
lipopolysaccharide-induced dopaminergic neuronal cell death in rat
mesencephalic neuron-glia cultures. Ann N Y Acad Sci. 962:332–346.
2002. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tufekci KU, Genc S and Genc K: The
endotoxin-induced neuroinflammation model of Parkinson's disease.
Parkinson's Dis. 2011:4874502011.
|
30
|
Dutta G, Zhang P and Liu B: The
lipopolysaccharide Parkinson's disease animal model: Mechanistic
studies and drug discovery. Fundam Clin Pharmacol. 22:453–464.
2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Jiang LH, Mackenzie AB, North RA and
Surprenant A: Brilliant blue G selectively blocks ATP-gated rat
P2X(7) receptors. Mol Pharmacol. 58:82–88. 2000.PubMed/NCBI
|
32
|
Sui Y, Stanić D, Tomas D, Jarrott B and
Horne MK: Meloxicam reduces lipopolysaccharide-induced degeneration
of dopaminergic neurons in the rat substantia nigra pars compacta.
Neurosci Lett. 460:121–125. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Herrera AJ, Castaño A, Venero JL, Cano J
and Machado A: The single intranigral injection of LPS as a new
model for studying the selective effects of inflammatory reactions
on dopaminergic system. Neurobiol Dis. 7:429–447. 2000. View Article : Google Scholar : PubMed/NCBI
|
34
|
Gourine AV, Poputnikov DM, Zhernosek N,
Melenchuk EV, Gerstberger R, Spyer KM and Gourine VN: P2 receptor
blockade attenuates fever and cytokine responses induced by
lipopolysaccharide in rats. Br J Pharmacol. 146:139–145. 2005.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Choe ES and McGinty JF:
N-Methyl-D-aspartate receptors and p38 mitogen-activated protein
kinase are required for cAMP-dependent cyclase response element
binding protein and Elk-1 phosphorylation in the striatum.
Neuroscience. 101:607–617. 2000. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhu P, Zhan L, Zhu T, Liang D, Hu J, Sun
W, Hou Q, Zhou H, Wu B, Wang Y and Xu E: The roles of p38 MAPK/MSK1
signaling pathway in the neuroprotection of hypoxic
postconditioning against transient global cerebral ischemia in
adult rats. Mol Neurobiol. 49:1338–1349. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Stanic D, Finkelstein DI, Bourke DW, Drago
J and Horne MK: Timecourse of striatal re-innervation following
lesions of dopaminergic SNpc neurons of the rat. Eur J Neurosci.
18:1175–1188. 2003. View Article : Google Scholar : PubMed/NCBI
|
38
|
Paxinos G and Watson C: The Rat Brain: In
Stereotaxic Coordinates. Academic Press; Incorporated: 1998
|
39
|
McLarnon JG, Ryu JK, Walker DG and Choi
HB: Upregulated expression of purinergic P2X(7) receptor in
Alzheimer disease and amyloid-beta peptide-treated microglia and in
peptide-injected rat hippocampus. J Neuropathol Exp Neurol.
65:1090–1097. 2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Liu H, Han X, Li Y, Zou H and Xie A:
Association of P2X7 receptor gene polymorphisms with sporadic
Parkinson's disease in a Han Chinese population. Neurosci Lett.
546:42–45. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Lehnardt S, Massillon L, Follett P, Jensen
FE, Ratan R, Rosenberg PA, Volpe JJ and Vartanian T: Activation of
innate immunity in the CNS triggers neurodegeneration through a
Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA.
100:8514–8519. 2003. View Article : Google Scholar : PubMed/NCBI
|
42
|
Facci L, Barbierato M, Marinelli C,
Argentini C, Skaper SD and Giusti P: Toll-like receptors 2, −3 and
−4 prime microglia but not astrocytes across central nervous system
regions for ATP-dependent interleukin-1β release. Sci Rep.
4:68242014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Choi HB, Ryu JK, Kim SU and McLarnon JG:
Modulation of the purinergic P2X7 receptor attenuates
lipopolysaccharide-mediated microglial activation and neuronal
damage in inflamed brain. J Neurosci. 27:4957–4968. 2007.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Chen S, Ma Q, Krafft PR, Chen Y, Tang J,
Zhang J and Zhang JH: P2X7 receptor antagonism inhibits p38
mitogen-activated protein kinase activation and ameliorates
neuronal apoptosis after subarachnoid hemorrhage in rats. Crit Care
Med. 41:e466–e474. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Wu F, Wang Z, Gu JH, Ge JB, Liang ZQ and
Qin ZH: p38(MAPK)/p53-Mediated Bax induction contributes to neurons
degeneration in rotenone-induced cellular and rat models of
Parkinson's disease. Neurochem Int. 63:133–140. 2013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Pawate S, Shen Q, Fan F and Bhat NR: Redox
regulation of glial inflammatory response to lipopolysaccharide and
interferongamma. J Neurosci Res. 77:540–551. 2004. View Article : Google Scholar : PubMed/NCBI
|
47
|
Krishna M and Narang H: The complexity of
mitogen-activated protein kinases (MAPKs) made simple. Cell Mol
Life Sci. 65:3525–3544. 2008. View Article : Google Scholar : PubMed/NCBI
|
48
|
Franke H, Verkhratsky A, Burnstock G and
Illes P: Pathophysiology of astroglial purinergic signalling.
Purinergic Signal. 8:629–657. 2012. View Article : Google Scholar : PubMed/NCBI
|