1
|
Gregory RI, Yan KP, Amuthan G, Chendrimada
T, Doratotaj B, Cooch N and Shiekhattar R: The Microprocessor
complex mediates the genesis of microRNAs. Nature. 432:235–240.
2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
He L and Hannon GJ: MicroRNAs: Small RNAs
with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Lund E, Güttinger S, Calado A, Dahlberg JE
and Kutay U: Nuclear export of microRNA precursors. Science.
303:95–98. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Cerutti H and Casas-Mollano JA: On the
origin and functions of RNA-mediated silencing: From protists to
man. Curr Genet. 50:81–99. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Shabalina SA and Koonin EV: Origins and
evolution of eukaryotic RNA interference. Trends Ecol Evol.
23:578–587. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Langenberger D, Bermudez-Santana CI,
Stadler PF and Hoffmann S: Identification and classification of
small RNAs in transcriptome sequence data. Pac Symp Biocomput.
80–87. 2010.PubMed/NCBI
|
7
|
Torrezan GT, Ferreira EN, Nakahata AM,
Barros BD, Castro MT, Correa BR, Krepischi AC, Olivieri EH, Cunha
IW, Tabori U, et al: Recurrent somatic mutation in DROSHA induces
microRNA profile changes in Wilms tumour. Nat Commun. 5:40392014.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Rakheja D, Chen KS, Liu Y, Shukla AA,
Schmid V, Chang TC, Khokhar S, Wickiser JE, Karandikar NJ, Malter
JS, et al: Somatic mutations in DROSHA and DICER1 impair microRNA
biogenesis through distinct mechanisms in Wilms tumours. Nat
Commun. 2:48022014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yang JS and Lai EC: Alternative miRNA
biogenesis pathways and the interpretation of core miRNA pathway
mutants. Mol Cell. 43:892–903. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Cheloufi S, Dos Santos CO, Chong MM and
Hannon GJ: A dicer-independent miRNA biogenesis pathway that
requires Ago catalysis. Nature. 465:584–589. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Cifuentes D, Xue H, Taylor DW, Patnode H,
Mishima Y, Cheloufi S, Ma E, Mane S, Hannon GJ, Lawson ND, et al: A
novel miRNA processing pathway independent of Dicer requires
Argonaute2 catalytic activity. Science. 328:1694–1698. 2010.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Miyoshi K, Miyoshi T and Siomi H: Many
ways to generate microRNA-like small RNAs: Non-canonical pathways
for microRNA production. Mol Genet Genomics. 284:95–103. 2010.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Yang JS, Maurin T, Robine N, Rasmussen KD,
Jeffrey KL, Chandwani R, Papapetrou EP, Sadelain M, O'Carroll D and
Lai EC: Conserved vertebrate mir-451 provides a platform for
Dicer-independent, Ago2-mediated microRNA biogenesis. Proc Natl
Acad Sci USA. 107:15163–15168. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Okamura K, Hagen JW, Duan H, Tyler DM and
Lai EC: The mirtron pathway generates microRNA-class regulatory
RNAs in Drosophila. Cell. 130:89–100. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ruby JG, Jan CH and Bartel DP: Intronic
microRNA precursors that bypass Drosha processing. Nature.
448:83–86. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Flynt AS, Greimann JC, Chung WJ, Lima CD
and Lai EC: MicroRNA biogenesis via splicing and exosome-mediated
trimming in Drosophila. Mol Cell. 38:900–907. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chong MM, Zhang G, Cheloufi S, Neubert TA,
Hannon GJ and Littman DR: Canonical and alternate functions of the
microRNA biogenesis machinery. Genes Dev. 24:1951–1960. 2010.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Kim VN, Han J and Siomi MC: Biogenesis of
small RNAs in animals. Nat Rev Mol Cell Bio. 10:126–139. 2009.
View Article : Google Scholar
|
19
|
Okamura K, Phillips MD, Tyler DM, Duan H,
Chou YT and Lai EC: The regulatory activity of microRNA* species
has substantial influence on microRNA and 3′ UTR evolution. Nat
Struct Mol Biol. 15:354–363. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Czech B, Zhou R, Erlich Y, Brennecke J,
Binari R, Villalta C, Gordon A, Perrimon N and Hannon GJ:
Hierarchical rules for Argonaute loading in Drosophila. Mol Cell.
36:445–456. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Okamura K, Liu N and Lai EC: Distinct
mechanisms for microRNA strand selection by Drosophila Argonautes.
Mol Cell. 36:431–444. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Guo L and Lu Z: The fate of miRNA* strand
through evolutionary analysis: Implication for degradation as
merely carrier strand or potential regulatory molecule? PLoS One.
5:e113872010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jagadeeswaran G, Zheng Y, Sumathipala N,
Jiang H, Arrese EL, Soulages JL, Zhang W and Sunkar R: Deep
sequencing of small RNA libraries reveals dynamic regulation of
conserved and novel microRNAs and microRNA-stars during silkworm
development. BMC Genomics. 11:522010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Landgraf P, Rusu M, Sheridan R, Sewer A,
Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M,
et al: A mammalian microRNA expression atlas based on small RNA
library sequencing. Cell. 129:1401–1414. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Morin RD, Aksay G, Dolgosheina E, Ebhardt
HA, Magrini V, Mardis ER, Sahinalp SC and Unrau PJ: Comparative
analysis of the small RNA transcriptomes of Pinus contorta and
Oryza sativa. Genome Res. 18:571–584. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Guo L, Yang Q, Lu J, Li H, Ge Q, Gu W, Bai
Y and Lu Z: A comprehensive survey of mirna repertoire and 3′
addition events in the placentas of patients with pre-eclampsia
from high-throughput sequencing. PLoS One. 6:e210722011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Neilsen CT, Goodall GJ and Bracken CP:
IsomiRs-the overlooked repertoire in the dynamic microRNAome.
Trends Genet. 28:544–549. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lee LW, Zhang S, Etheridge A, Ma L, Martin
D, Galas D and Wang K: Complexity of the microRNA repertoire
revealed by next generation sequencing. RNA. 16:2170–2180. 2010.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Guo L and Chen F: A Challenge for miRNA:
Multiple isomiRs in miRNAomics. Gene. 544:1–7. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Burroughs AM, Ando Y, de Hoon MJ, Tomaru
Y, Nishibu T, Ukekawa R, Funakoshi T, Kurokawa T, Suzuki H,
Hayashizaki Y and Daub CO: A comprehensive survey of 3′ animal
miRNA modification events and a possible role for 3′ adenylation in
modulating miRNA targeting effectiveness. Genome Res. 20:1398–1410.
2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Guo L, Li H, Lu J, Yang Q, Ge Q, Gu W, Bai
Y and Lu Z: Tracking miRNA precursor metabolic products and
processing sites through completely analyzing high-throughput
sequencing data. Mol Biol Rep. 39:2031–2038. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Loher P, Londin ER and Rigoutsos I: Isomir
expression profiles in human lymphoblastoid cell lines exhibit
population and gender dependencies. Oncotarget. 5:8790–8802. 2014.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Llorens F, Hummel M, Pantano L, Pastor X,
Vivancos A, Castillo E, Mattlin H, Ferrer A, Ingham M, Noguera M,
et al: Microarray and deep sequencing cross-platform analysis of
the mirRNome and isomiR variation in response to epidermal growth
factor. BMC Genomics. 14:3712013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Guo L, Yu J, Liang T and Zou Q:
miR-isomiRExp: A web-server for the analysis of expression of miRNA
at the miRNA/isomiR levels. Sci Rep. 6:237002016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Larkin MA, Blackshields G, Brown NP,
Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm
A, Lopez R, et al: Clustal W and clustal X version 2.0.
Bioinformatics. 23:2947–2948. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Tamura K, Stecher G, Peterson D, Filipski
A and Kumar S: MEGA6: Molecular evolutionary genetics analysis
version 6.0. Mol Biol Evol. 30:2725–2729. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Finn RD, Bateman A, Clements J, Coggill P,
Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J,
et al: Pfam: The protein families database. Nucleic Acids Res.
42:D222–D230. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Letunic I, Doerks T and Bork P: SMART:
Recent updates, new developments and status in 2015. Nucleic Acids
Res. 43:257–260. 2014. View Article : Google Scholar
|
39
|
Guo L, Yu J, Yu H, Zhao Y, Chen S, Xu C
and Chen F: Evolutionary and expression analysis of miR-#-5p and
miR-#-3p at the miRNAs/isomiRs levels. Biomed Res Int.
2015:1683582015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Guo L, Zhang H, Zhao Y, Yang S and Chen F:
Selected isomiR expression profiles via arm switching? Gene.
533:149–155. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Guo L, Zhao Y, Zhang H, Yang S and Chen F:
Close association between paralogous multiple isomiRs and
paralogous/orthologues miRNA sequences implicates dominant sequence
selection across various animal species. Gene. 527:624–629. 2013.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Guo L, Chen F and Lu Z: Multiple IsomiRs
and Diversity of miRNA Sequences Unveil Evolutionary Roles and
Functional Relationships Across Animals. MicroRNA and Non-Coding
RNA: Technology, Developments and Applications. 127–144. 2013.
|