1
|
Shott SR, Joseph A and Heithaus D: Hearing
loss in children with Down syndrome. Int J Pediatr
Otorhinolaryngol. 61:199–205. 2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
Nespoli L, Burgio GR, Ugazio AG and
Maccario R: Immunological features of Down's syndrome: A review. J
Intellect Disabil Res. 37:543–551. 1993. View Article : Google Scholar : PubMed/NCBI
|
3
|
Karlsson B, Gustafsson J, Hedov G,
Ivarsson SA and Annerén G: Thyroid dysfunction in Down's syndrome:
Relation to age and thyroid autoimmunity. Arch Dis Child.
79:242–245. 1998. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wittmann T, Hyman A and Desai A: The
spindle: A dynamic assembly of microtubules and motors. Nat Cell
Biol. 3:E28–E34. 2001. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Walczak CE and Heald R: Mechanisms of
mitotic spindle assembly and function. Int Rev Cytol. 265:111–158.
2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ohzeki J, Nakano M, Okada T and Masumoto
H: CENP-B box is required for de novo centromere chromatin assembly
on human alphoid DNA. J Cell Biol. 159:765–775. 2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Trowell HE, Nagy A, Vissel B and Choo KH:
Long-range analyses of the centromeric regions of human chromosomes
13, 14 and 21: Identification of a narrow domain containing two key
centromeric DNA elements. Hum Mol Genet. 2:1639–1649. 1993.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Okada T, Ohzeki J, Nakano M, Yoda K,
Brinkley WR, Larionov V and Masumoto H: CENP-B controls centromere
formation depending on the chromatin context. Cell. 131:1287–1300.
2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tanaka Y, Tachiwana H, Yoda K, Masumoto H,
Okazaki T, Kurumizaka H and Yokoyama S: Human centromere protein B
induces translational positioning of nucleosomes on alpha-satellite
sequences. J Biol Chem. 280:41609–41618. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hasson D, Panchenko T, Salimian KJ, Salman
MU, Sekulic N, Alonso A, Warburton PE and Black BE: The octamer is
the major form of CENP-A nucleosomes at human centromeres. Nat
Struct Mol Biol. 20:687–695. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Okamoto Y, Nakano M, Ohzeki J, Larionov V
and Masumoto H: A minimal CENP-A core is required for nucleation
and maintenance of a functional human centromere. EMBO J.
26:1279–1291. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ikeno M, Masumoto H and Okazaki T:
Distribution of CENP-B boxes reflected in CREST centromere
antigenic sites on long-range alpha-satellite DNA arrays of human
chromosome 21. Hum Mol Genet. 3:1245–1257. 1994. View Article : Google Scholar : PubMed/NCBI
|
13
|
Alkan C, Ventura M, Archidiacono N, Rocchi
M, Sahinalp SC and Eichler EE: Organization and evolution of
primate centromeric DNA from whole-genome shotgun sequence data.
PLoS Comput Biol. 3:1807–1820. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Basu J, Stromberg G, Compitello G, Willard
HF and Van Bokkelen G: Rapid creation of BAC-based human artificial
chromosome vectors by transposition with synthetic alpha-satellite
arrays. Nucleic Acids Res. 33:587–596. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Earnshaw WC, Sullivan KF, Machlin PS,
Cooke CA, Kaiser DA, Pollard TD, Rothfield NF and Cleveland DW:
Molecular cloning of cDNA for CENP-B, the major human centromere
autoantigen. J Cell Biol. 104:817–829. 1987. View Article : Google Scholar : PubMed/NCBI
|
16
|
Masumoto H, Masukata H, Muro Y, Nozaki N
and Okazaki T: A human centromere antigen (CENP-B) interacts with a
short specific sequence in alphoid DNA, a human centromeric
satellite. J Cell Biol. 109:1963–1973. 1989. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tanaka Y, Kurumizaka H and Yokoyama S: CpG
methylation of the CENP-B box reduces human CENP-B binding. FEBS J.
272:282–289. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Xia YY, Ding YB, Liu XQ, Chen XM, Cheng
SQ, Li LB, Ma MF, He JL and Wang YX: Allelic methylation status of
CpG islands on chromosome 21q in patients with Trisomy 21. Mol Med
Rep. 9:1681–1688. 2014.PubMed/NCBI
|
19
|
Ugarković D and Plohl M: Variation in
satellite DNA profile-causes and effects. EMBO J. 21:5955–5959.
2002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sullivan LL, Boivin CD, Mravinac B, Song
IY and Sullivan BA: Genomic size of CENP-A domain is proportional
to total alpha satellite array size at human centromeres and
expands in cancer cells. Chromosome Res. 19:457–470. 2011.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Irvine DV, Amor DJ, Perry J, Sirvent N,
Pedeutour F, Choo KH and Saffery R: Chromosome size and origin as
determinants of the level of CENP-A incorporation into human
centromeres. Chromosome Res. 12:805–815. 2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Meštrović N, Pavlek M, Car A,
Castagnone-Sereno P, Abad P and Plohl M: Conserved DNA motifs,
including the CENP-B box-like, are possible promoters of satellite
DNA array rearrangements in nematodes. PLoS One. 8:e673282013.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Fachinetti D, Folco HD, Nechemia-Arbely Y,
Valente LP, Nguyen K, Wong AJ, Zhu Q, Holland AJ, Desai A, Jansen
LE and Cleveland DW: A two-step mechanism for epigenetic
specification of centromere identity and function. Nat Cell Biol.
15:1056–1066. 2013. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Xia YY, Ding YB, Liu XQ, Chen XM, Cheng
SQ, Li LB, Ma MF, He JL and Wang YX: Racial/ethnic disparities in
human DNA methylation. Biochim Biophys Acta. 1846:258–262.
2014.PubMed/NCBI
|