1
|
Yisahak SF, Beagley J, Hambleton IR and
Narayan KM: IDF Diabetes Atlas: Diabetes in North America and the
Caribbean: An update. Diabetes Res Clin Pract. 103:223–230. 2014.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Aso Y, Inukai T, Tayama K and Takemura Y:
Serum concentrations of advanced glycation endproducts are
associated with the development of atherosclerosis as well as
diabetic microangiopathy in patients with type 2 diabetes. Acta
Diabetol. 37:87–92. 2000. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kiuchi K, Nejima J, Takano T, Ohta M and
Hashimoto H: Increased serum concentrations of advanced glycation
end products: A marker of coronary artery disease activity in type
2 diabetic patients. Heart. 85:87–91. 2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Genuth S, Sun W, Cleary P, Sell DR, Dahms
W, Malone J, Sivitz W and Monnier VM: DCCT Skin Collagen Ancillary
Study Group: Glycation and carboxymethyllysine levels in skin
collagen predict the risk of future 10-year progression of diabetic
retinopathy and nephropathy in the diabetes control and
complications trial and epidemiology of diabetes interventions and
complications participants with type 1 diabetes. Diabetes.
54:3103–3111. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Xu L, Zang P, Feng B and Qian Q:
Atorvastatin inhibits the expression of RAGE induced by advanced
glycation end products on aortas in healthy Sprague-Dawley rats.
Diabetol Metab Syndr. 6:1022014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Adamopoulos C, Piperi C, Gargalionis AN,
Dalagiorgou G, Spilioti E, Korkolopoulou P, Diamanti-Kandarakis E
and Papavassiliou AG: Advanced glycation end products upregulate
lysyl oxidase and endothelin-1 in human aortic endothelial cells
via parallel activation of ERK1/2-NF-κB and JNK-AP-1 signaling
pathways. Cell Mol Life Sci. 73:1685–1698. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Goldin A, Beckman JA, Schmidt AM and
Creager MA: Advanced glycation end products: Sparking the
development of diabetic vascular injury. Circulation. 114:597–605.
2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kishikawa H, Mine S, Kawahara C, Tabata T,
Hirose A, Okada Y and Tanaka Y: Glycated albumin and cross-linking
of CD44 induce scavenger receptor expression and uptake of oxidized
LDL in human monocytes. Biochem Biophys Res Commun. 339:846–851.
2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Nangaku M, Miyata T, Sada T, Mizuno M,
Inagi R, Ueda Y, Ishikawa N, Yuzawa H, Koike H, van Ypersele de
Strihou C and Kurokawa K: Anti-hypertensive agents inhibit in vivo
the formation of advanced glycation end products and improve renal
damage in a type 2 diabetic nephropathy rat model. J Am Soc
Nephrol. 14:1212–1222. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Thomas MC, Baynes JW, Thorpe SR and Cooper
ME: The role of AGEs and AGE inhibitors in diabetic cardiovascular
disease. Curr Drug Targets. 6:453–474. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Machado AP, Pinto RS, Moysés ZP,
Nakandakare ER, Quintão EC and Passarelli M: Aminoguanidine and
metformin prevent the reduced rate of HDL-mediated cell cholesterol
efflux induced by formation of advanced glycation end products. Int
J Biochem Cell Biol. 38:392–403. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Goh SY and Cooper ME: Clinical review: The
role of advanced glycation end products in progression and
complications of diabetes. J Clin Endocrinol Metab. 93:1143–1152.
2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Steenvoorden MM, Huizinga TW, Verzijl N,
Bank RA, Ronday HK, Luning HA, Lafeber FP, Toes RE and DeGroot J:
Activation of receptor for advanced glycation end products in
osteoarthritis leads to increased stimulation of chondrocytes and
synoviocytes. Arthritis Rheum. 54:253–263. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Fuentes MK, Nigavekar SS, Arumugam T,
Logsdon CD, Schmidt AM, Park JC and Huang EH: RAGE activation by
S100P in colon cancer stimulates growth, migration, and cell
signaling pathways. Dis Colon Rectum. 50:1230–1240. 2007.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Leclerc E, Fritz G, Weibel M, Heizmann CW
and Galichet A: S100B and S100A6 differentially modulate cell
survival by interacting with distinct RAGE (receptor for advanced
glycation end products) immunoglobulin domains. J Biol Chem.
282:31317–31331. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kim S and Kwon J: Actin cytoskeletal
rearrangement and dysfunction due to activation of the receptor for
advanced glycation end products is inhibited by thymosin beta 4. J
Physiol. 593:1873–1886. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Del Turco S, Navarra T, Gastaldelli A and
Basta G: Protective role of adiponectin on endothelial dysfunction
induced by AGEs: A clinical and experimental approach. Microvasc
Res. 82:73–76. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lin J, Tang Y, Kang Q, Feng Y and Chen A:
Curcumin inhibits gene expression of receptor for advanced
glycation end-products (RAGE) in hepatic stellate cells in vitro by
elevating PPARγ activity and attenuating oxidative stress. Br J
Pharmacol. 166:2212–2227. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hill BG, Benavides GA, Lancaster JR Jr,
Ballinger S, Dell'Italia L, Jianhua Z and Darley-Usmar VM:
Integration of cellular bioenergetics with mitochondrial quality
control and autophagy. Biol Chem. 393:1485–1512. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hill BG, Dranka BP, Zou L, Chatham JC and
Darley-Usmar VM: Importance of the bioenergetic reserve capacity in
response to cardiomyocyte stress induced by 4-hydroxynonenal.
Biochem J. 424:99–107. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Mitra K, Wunder C, Roysam B, Lin G and
Lippincott-Schwartz J: A hyperfused mitochondrial state achieved at
G1-S regulates cyclin E buildup and entry into S phase. Proc Natl
Acad Sci USA. 106:11960–11965. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kroemer G, Galluzzi L and Brenner C:
Mitochondrial membrane permeabilization in cell death. Physiol Rev.
87:99–163. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Dranka BP, Hill BG and Darley-Usmar VM:
Mitochondrial reserve capacity in endothelial cells: The impact of
nitric oxide and reactive oxygen species. Free Radic Biol Med.
48:905–914. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Higdon AN, Benavides GA, Chacko BK, Ouyang
X, Johnson MS, Landar A, Zhang J and Darley-Usmar VM: Hemin causes
mitochondrial dysfunction in endothelial cells through promoting
lipid peroxidation: The protective role of autophagy. Am J Physiol
Heart Circ Physiol. 302:H1394–H1409. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ballinger SW, Patterson C, Knight-Lozano
CA, Burow DL, Conklin CA, Hu Z, Reuf J, Horaist C, Lebovitz R,
Hunter GC, et al: Mitochondrial integrity and function in
atherogenesis. Circulation. 106:544–549. 2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lee J, Giordano S and Zhang J: Autophagy,
mitochondria and oxidative stress: Cross-talk and redox signalling.
Biochem J. 441:523–540. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hori O, Ichinoda F, Tamatani T, Yamaguchi
A, Sato N, Ozawa K, Kitao Y, Miyazaki M, Harding HP, Ron D, et al:
Transmission of cell stress from endoplasmic reticulum to
mitochondria: Enhanced expression of Lon protease. J Cell Biol.
157:1151–1160. 2002. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kizhakekuttu TJ, Wang J, Dharmashankar K,
Ying R, Gutterman DD, Vita JA and Widlansky ME: Adverse alterations
in mitochondrial function contribute to type 2 diabetes
mellitus-related endothelial dysfunction in humans. Arterioscler
Thromb Vasc Biol. 32:2531–2539. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hernandez-Mijares A, Rocha M,
Rovira-Llopis S, Bañuls C, Bellod L, de Pablo C, Alvarez A,
Roldan-Torres I, Sola-Izquierdo E and Victor VM: Human
leukocyte/endothelial cell interactions and mitochondrial
dysfunction in type 2 diabetic patients and their association with
silent myocardial ischemia. Diabetes Care. 36:1695–1702. 2013.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Ferrick DA, Neilson A and Beeson C:
Advances in measuring cellular bioenergetics using extracellular
flux. Drug Discov Today. 13:268–274. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gottlieb E, Armour SM, Harris MH and
Thompson CB: Mitochondrial membrane potential regulates matrix
configuration and cytochrome c release during apoptosis. Cell Death
Differ. 10:709–717. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lei T, Guo N, Tan MH and Li YF: Effect of
mouse oocyte vitrification on mitochondrial membrane potential and
distribution. J Huazhong Univ Sci Technolog Med Sci. 34:99–102.
2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Luft VC, Duncan BB, Schmidt MI, Chambless
LE, Pankow JS, Hoogeveen RC, Couper DJ and Heiss G: Carboxymethyl
lysine, an advanced glycation end product, and incident diabetes: A
case-cohort analysis of the ARIC Study. Diabet Med. 33:1392–1398.
2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sang HQ, Gu JF, Yuan JR, Zhang MH, Jia XB
and Feng L: The protective effect of Smilax glabra extract on
advanced glycation end products-induced endothelial dysfunction in
HUVECs via RAGE-ERK1/2-NF-κB pathway. J Ethnopharmacol.
155:785–795. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Rempel LC, Finco AB, Maciel RA, Bosquetti
B, Alvarenga LM, Souza WM, Pecoits-Filho R and Stinghen AE: Effect
of PKC-β signaling pathway on expression of MCP-1 and VCAM-1 in
different cell models in response to advanced glycation end
products (AGEs). Toxins (Basel). 7:1722–1737. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Solé M, Miñano-Molina AJ and Unzeta M:
Cross-talk between Aβ and endothelial SSAO/VAP-1 accelerates
vascular damage and Aβ aggregation related to CAA-AD. Neurobiol
Aging. 36:762–775. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tang X, Luo YX, Chen HZ and Liu DP:
Mitochondria, endothelial cell function, and vascular diseases.
Front Physiol. 5:1752014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Brand MD and Nicholls DG: Assessing
mitochondrial dysfunction in cells. Biochem J. 435:297–312. 2011.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Shenouda SM, Widlansky ME, Chen K, Xu G,
Holbrook M, Tabit CE, Hamburg NM, Frame AA, Caiano TL, Kluge MA, et
al: Altered mitochondrial dynamics contributes to endothelial
dysfunction in diabetes mellitus. Circulation. 124:444–453. 2011.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Ong SB, Subrayan S, Lim SY, Yellon DM,
Davidson SM and Hausenloy DJ: Inhibiting mitochondrial fission
protects the heart against ischemia/reperfusion injury.
Circulation. 121:2012–2022. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Schleicher E and Friess U: Oxidative
stress, AGE, and atherosclerosis. Kidney Int Supp. S17–S26. 2007.
View Article : Google Scholar
|
42
|
Groschner LN, Waldeck-Weiermair M, Malli R
and Graier WF: Endothelial mitochondria-less respiration, more
integration. Pflugers Arch. 464:63–76. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Eelen G, de Zeeuw P, Simons M and
Carmeliet P: Endothelial cell metabolism in normal and diseased
vasculature. Circ Res. 116:1231–1244. 2015. View Article : Google Scholar : PubMed/NCBI
|