1
|
Rahimi Z, Kasraei R, Najafi F, Tanhapoor
M, Abdi H, Rahimi Z, Vaisi-Raygani A, Aznab M and Moradi M: Cancer
notification at a referral hospital of Kermanshah, Western Iran
(2006–2009). Asian Pac J Cancer Prev. 16:133–137. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yang J, Zhang Q, Li K, Yin H and Zheng JN:
Composite peptide-based vaccines for cancer immunotherapy (Review).
Int J Mol Med. 35:17–23. 2015.PubMed/NCBI
|
3
|
Rabbani-Chadegani A, Paydar P, Amirshenava
M and Aramvash A: An in vitro study on the effect of vinca
alkaloid, vinorelbine, on chromatin histone, HMGB proteins and
induction of apoptosis in mice non-adherent bone marrow cells. Drug
Chem Toxicol. 38:220–226. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hai-Tao Z, Hui-Cheng L, Zheng-Wu L and
Chang-Hong G: A tumor-penetrating peptide modification enhances the
antitumor activity of endostatin in vivo. Anticancer Drugs.
22:409–415. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Minchinton AI and Tannock IF: Drug
penetration in solid tumours. Nat Rev Cancer. 6:583–592. 2006.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Xiong JP, Stehle T, Diefenbach B, Zhang R,
Dunker R, Scott DL, Joachimiak A, Goodman SL and Arnaout MA:
Crystal structure of the extracellular segment of integrin alpha
Vbeta3. Science. 294:339–345. 2001. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sugahara KN, Teesalu T, Karmali PP,
Kotamraju VR, Agemy L, Girard OM, Hanahan D, Mattrey RF and
Ruoslahti E: Tissue-penetrating delivery of compounds and
nanoparticles into tumors. Cancer Cell. 16:510–520. 2009.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Teesalu T, Sugahara KN, Kotamraju VR and
Ruoslahti E: C-end rule peptides mediate neuropilin-1-dependent
cell, vascular, and tissue penetration. Proc Natl Acad Sci USA.
106:16157–16162. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Desgrosellier JS and Cheresh DA: Integrins
in cancer: Biological implications and therapeutic opportunities.
Nat Rev Cancer. 10:9–22. 2010. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Emerich DF, Snodgrass P, Dean RL,
Lafreniere D, Agostino M, Wiens T, Xiong H, Hasler B, Marsh J, Pink
M, et al: Bradykinin modulation of tumor vasculature: I. activation
of B2 receptors increases delivery of chemotherapeutic agents into
solid peripheral tumors, enhancing their efficacy. J Pharmacol Exp
Ther. 296:623–631. 2001.PubMed/NCBI
|
11
|
Emerich DF, Dean RL, Snodgrass P,
Lafreniere D, Agostino M, Wiens T, Xiong H, Hasler B, Marsh J, Pink
M, et al: Bradykinin modulation of tumor vasculature: II.
activation of nitric oxide and phospholipase A2/prostaglandin
signaling pathways synergistically modifies vascular physiology and
morphology to enhance delivery of chemotherapeutic agents to
tumors. J Pharmacol Exp Ther. 296:632–641. 2001.PubMed/NCBI
|
12
|
Li CJ, Miyamoto Y, Kojima Y and Maeda H:
Augmentation of tumour delivery of macromolecular drugs with
reduced bone marrow delivery by elevating blood pressure. Br J
Cancer. 67:975–980. 1993. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kadonosono T, Yamano A, Goto T, Tsubaki T,
Niibori M, Kuchimaru T and Kizaka-Kondoh S: Cell penetrating
peptides improve tumor delivery of cargos through
neuropilin-1-dependent extravasation. J Control Release. 201:14–21.
2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
De G, Ko JK, Tan T, Zhu H, Li H and Ma J:
Amphipathic tail-anchoring peptide is a promising therapeutic agent
for prostate cancer treatment. Oncotarget. 5:7734–7747. 2014.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Nyberg P, Salo T and Kalluri R: Tumor
microenvironment and angiogenesis. Front Biosci. 13:6537–6553.
2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Pasqualini R and Ruoslahti E: Organ
targeting in vivo using phage display peptide libraries. Nature.
380:364–366. 1996. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Li ZJ and Cho CH: Development of peptides
as potential drugs for cancer therapy. Curr Pharm Des.
16:1180–1189. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Enbäck J and Laakkonen P: Tumour-homing
peptides: Tools for targeting, imaging and destruction. Biochem Soc
Trans. 35:780–783. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Trepel M, Pasqualini R and Arap W: Chapter
4. Screening phage-display peptide libraries for vascular targeted
peptides. Methods Enzymol. 445:83–106. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ruoslahti E, Bhatia SN and Sailor MJ:
Targeting of drugs and nanoparticles to tumors. J Cell Biol.
188:759–768. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Laakkonen P and Vuorinen K: Homing
peptides as targeted delivery vehicles. Integr Biol (Camb).
2:326–337. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Myrberg H, Zhang L, Mäe M and Langel U:
Design of a tumor-homing cell-penetrating peptide. Bioconjug Chem.
19:70–75. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Assa-Munt N, Jia X, Laakkonen P and
Ruoslahti E: Solution structures and integrin binding activities of
an RGD peptide with two isomers. Biochemistry. 40:2373–2378. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Ye Y, Zhu L, Ma Y, Niu G and Chen X:
Synthesis and evaluation of new iRGD peptide analogs for tumor
optical imaging. Bioorg Med Chem Lett. 21:1146–1150. 2011.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang CF, Sarparanta MP, Mäkilä EM, Hyvönen
ML, Laakkonen PM, Salonen JJ, Hirvonen JT, Airaksinen AJ and Santos
HA: Multifunctional porous silicon nanoparticles for cancer
theranostics. Biomaterials. 48:108–118. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sugahara KN, Teesalu T, Karmali PP,
Kotamraju VR, Agemy L, Greenwald DR and Ruoslahti E:
Coadministration of a tumor-penetrating peptide enhances the
efficacy of cancer drugs. Science. 328:1031–1035. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Song W, Li M, Tang Z, Li Q, Yang Y, Liu H,
Duan T, Hong H and Chen X: Methoxypoly(ethylene
glycol)-block-poly(L-glutamic acid)-loaded cisplatin and a
combination with iRGD for the treatment of non-small-cell lung
cancers. Macromol Biosci. 12:1514–1523. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gu G, Gao X, Hu Q, Kang T, Liu Z, Jiang M,
Miao D, Song Q, Yao L, Tu Y, et al: The influence of the
penetrating peptide iRGD on the effect of paclitaxel-loaded
MT1-AF7p-conjugated nanoparticles on glioma cells. Biomaterials.
34:5138–5148. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Du R, Zhong T, Zhang WQ, Song P, Song WD,
Zhao Y, Wang C, Tang YQ, Zhang X and Zhang Q: Antitumor effect of
iRGD-modified liposomes containing conjugated linoleic
acid-paclitaxel (CLA-PTX) on B16-F10 melanoma. Int J Nanomedicine.
9:3091–3105. 2014.PubMed/NCBI
|
30
|
Yu KF, Zhang WQ, Luo LM, Song P, Li D, Du
R, Ren W, Huang D, Lu WL, Zhang X and Zhang Q: The antitumor
activity of a doxorubicin loaded, iRGD-modified
sterically-stabilized liposome on B16-F10 melanoma cells: In vitro
and in vivo evaluation. Int J Nanomedicine. 8:2473–2485.
2013.PubMed/NCBI
|
31
|
Wang K, Zhang X, Liu Y, Liu C, Jiang B and
Jiang Y: Tumor penetrability and anti-angiogenesis using
iRGD-mediated delivery of doxorubicin-polymer conjugates.
Biomaterials. 35:8735–8747. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Akashi Y, Oda T, Ohara Y, Miyamoto R,
Kurokawa T, Hashimoto S, Enomoto T, Yamada K, Satake M and Ohkohchi
N: Anticancer effects of gemcitabine are enhanced by
co-administered iRGD peptide in murine pancreatic cancer models
that overexpressed neuropilin-1. Br J Cancer. 110:1481–1487. 2014.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Puig-Saus C, Rojas LA, Laborda E, Figueras
A, Alba R, Fillat C and Alemany R: iRGD tumor-penetrating
peptide-modified oncolytic adenovirus shows enhanced tumor
transduction, intratumoral dissemination and antitumor efficacy.
Gene Ther. 21:767–774. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wang CF, Mäkilä EM, Kaasalainen MH, Liu D,
Sarparanta MP, Airaksinen AJ, Salonen JJ, Hirvonen JT and Santos
HA: Copper-free azide-alkyne cycloaddition of targeting peptides to
porous silicon nanoparticles for intracellular drug uptake.
Biomaterials. 35:1257–1266. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sha H, Zou Z, Xin K, Bian X, Cai X, Lu W,
Chen J, Chen G, Huang L, Blair AM, et al: Tumor-penetrating peptide
fused EGFR single-domain antibody enhances cancer drug penetration
into 3D multicellular spheroids and facilitates effective gastric
cancer therapy. J Control Release. 200:188–200. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li M, Tang Z, Zhang D, Sun H, Liu H, Zhang
Y, Zhang Y and Chen X: Doxorubicin-loaded polysaccharide
nanoparticles suppress the growth of murine colorectal carcinoma
and inhibit the metastasis of murine mammary carcinoma in rodent
models. Biomaterials. 51:161–172. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Peng ZH and Kopeček J: Synthesis and
activity of tumor-homing peptide iRGD and histone deacetylase
inhibitor valproic acid conjugate. Bioorg Med Chem Lett.
24:1928–1933. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang Q, Zhang Y, Li K, Wang H, Li H and
Zheng J: A novel strategy to improve the therapeutic efficacy of
gemcitabine for non-small cell lung cancer by the tumor-penetrating
peptide iRGD. PLoS One. 10:e01298652015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lao X, Li B, Liu M, Chen J, Gao X and
Zheng H: Increased antitumor activity of tumor-specific peptide
modified thymopentin. Biochimie. 107:277–285. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Chen R, Braun GB, Luo X, Sugahara KN,
Teesalu T and Ruoslahti E: Application of a proapoptotic peptide to
intratumorally spreading cancer therapy. Cancer Res. 73:1352–1361.
2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Mao X, Liu J, Gong Z, Zhang H, Lu Y, Zou
H, Yu Y, Chen Y, Sun Z, Li W, et al: iRGD-conjugated DSPE-PEG2000
nanomicelles for targeted delivery of salinomycin for treatment of
both liver cancer cells and cancer stem cells. Nanomedicine (Lond).
10:2677–2695. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Sugahara KN, Braun GB, de Mendoza TH,
Kotamraju VR, French RP, Lowy AM, Teesalu T and Ruoslahti E:
Tumor-penetrating iRGD peptide inhibits metastasis. Mol Cancer
Ther. 14:120–128. 2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hamilton AM, Aidoudi-Ahmed S, Sharma S,
Kotamraju VR, Foster PJ, Sugahara KN, Ruoslahti E and Rutt BK:
Nanoparticles coated with the tumor-penetrating peptide iRGD reduce
experimental breast cancer metastasis in the brain. J Mol Med
(Berl). 93:991–1001. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Ni D, Ding H, Liu S, Yue H, Bao Y, Wang Z,
Su Z, Wei W and Ma G: Superior intratumoral penetration of
paclitaxel nanodots strengthens tumor restriction and metastasis
prevention. Small. 11:2518–2526. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Cao Y: Angiogenesis: What can it offer for
future medicine? Exp Cell Res. 316:1304–1308. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Hoffman JA, Giraudo E, Singh M, Zhang L,
Inoue M, Porkka K, Hanahan D and Ruoslahti E: Progressive vascular
changes in a transgenic mouse model of squamous cell carcinoma.
Cancer Cell. 4:383–391. 2003. View Article : Google Scholar : PubMed/NCBI
|
47
|
Singh RK, Bucana CD, Gutman M, Fan D,
Wilson MR and Fidler IJ: Organ site-dependent expression of basic
fibroblast growth factor in human renal cell carcinoma cells. Am J
Pathol. 145:365–374. 1994.PubMed/NCBI
|
48
|
Li ZJ, Wu WK, Ng SS, Yu L, Li HT, Wong CC,
Wu YC, Zhang L, Ren SX, Sun XG, et al: A novel peptide specifically
targeting the vasculature of orthotopic colorectal cancer for
imaging detection and drug delivery. J Control Release.
148:292–302. 2010. View Article : Google Scholar : PubMed/NCBI
|
49
|
Ariztia EV, Lee CJ, Gogoi R and Fishman
DA: The tumor microenvironment: Key to early detection. Crit Rev
Clin Lab Sci. 43:393–425. 2006. View Article : Google Scholar : PubMed/NCBI
|
50
|
Lahdenranta J, Sidman RL, Pasqualini R and
Arap W: Treatment of hypoxia-induced retinopathy with targeted
proapoptotic peptidomimetic in a mouse model of disease. FASEB J.
21:3272–3278. 2007. View Article : Google Scholar : PubMed/NCBI
|
51
|
Buehler A, van Zandvoort MA, Stelt BJ,
Hackeng TM, Schrans-Stassen BH, Bennaghmouch A, Hofstra L,
Cleutjens JP, Duijvestijn A, Smeets MB, et al: cNGR: A novel homing
sequence for CD13/APN targeted molecular imaging of murine cardiac
angiogenesis in vivo. Arterioscler Thromb Vasc Biol. 26:2681–2687.
2006. View Article : Google Scholar : PubMed/NCBI
|