1
|
Johansson S, Svensson H and Denekamp J:
Timescale of evolution of late radiation injury after postoperative
radiotherapy of breast cancer patients. Int J Radiat Oncol Biol
Phys. 48:745–750. 2000. View Article : Google Scholar : PubMed/NCBI
|
2
|
Williams HJ and Davies AM: The effect of
X-rays on bone: A pictorial review. Eur Radiol. 16:619–633. 2006.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Baxter NN, Habermann EB, Tepper JE, Durham
SB and Virnig BA: Risk of pelvic fractures in older women following
pelvic irradiation. JAMA. 294:2587–2593. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Schmeler KM, Jhingran A, Iyer RB, Sun CC,
Eifel PJ, Soliman PT, Ramirez PT, Frumovitz M, Bodurka DC and Sood
AK: Pelvic fractures after radiotherapy for cervical cancer:
Implications for survivors. Cancer. 116:625–630. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Overgaard M: Spontaneous radiation-induced
rib fractures in breast cancer patients treated with postmastectomy
irradiation. A clinical radiobiological analysis of the influence
of fraction size and dose-response relationships on late bone
damage. Acta Oncol. 27:117–122. 1988. View Article : Google Scholar : PubMed/NCBI
|
6
|
Nambu A, Onishi H, Aoki S, Tominaga L,
Kuriyama K, Araya M, Saito R, Maehata Y, Komiyama T, Marino K, et
al: Rib fracture after stereotactic radiotherapy for primary lung
cancer: Prevalence, degree of clinical symptoms, and risk factors.
BMC Cancer. 13:682013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Choo R, Lukka H, Cheung P, Corbett T,
Briones-Urbina R, Vieth R, Ehrlich L, Kiss A and Danjoux C:
Randomized, double-blinded, placebo-controlled, trial of
risedronate for the prevention of bone mineral density loss in
nonmetastatic prostate cancer patients receiving radiation therapy
plus androgen deprivation therapy. Int J Radiat Oncol Biol Phys.
85:1239–1245. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kondo H, Yumoto K, Alwood JS, Mojarrab R,
Wang A, Almeida EA, Searby ND, Limoli CL and Globus RK: Oxidative
stress and gamma radiation-induced cancellous bone loss with
musculoskeletal disuse. J Appl Physiol (1985). 108:152–161. 2010.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Jia D, Gaddy D, Suva LJ and Corry PM:
Rapid loss of bone mass and strength in mice after abdominal
irradiation. Radiat Res. 176:624–635. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Morgan WF and Sowa MB: Non-targeted
effects induced by ionizing radiation: Mechanisms and potential
impact on radiation induced health effects. Cancer Lett. 356:17–21.
2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Fernandez-Palomo C, Bräuer-Krisch E,
Laissue J, Vukmirovic D, Blattmann H, Seymour C, Schültke E and
Mothersill C: Use of synchrotron medical microbeam irradiation to
investigate radiation-induced bystander and abscopal effects in
vivo. Phys Med. 31:584–595. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Okonogi N, Saitoh J, Suzuki Y, Noda SE,
Ohno T, Oike T, Ohkubo Y, Ando K, Sato H and Nakano T: Changes in
bone mineral density in uterine cervical cancer patients after
radiation therapy. Int J Radiat Oncol Biol Phys. 87:968–974. 2013.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Hwang JH, Song SH, Lee JK, Lee NW and Lee
KW: Bone mineral density after concurrent chemoradiation in
patients with uterine cervical cancer. Menopause. 17:416–420. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Mori S: Bone quality and strength relating
with bone remodeling. Clin Calcium. 26:17–27. 2016.(In Japanese).
PubMed/NCBI
|
15
|
Caplan AI and Bruder SP: Mesenchymal stem
cells: Building blocks for molecular medicine in the 21st century.
Trends Mol Med. 7:259–264. 2001. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lda S Meirelles, Fontes AM, Covas DT and
Caplan AI: Mechanisms involved in the therapeutic properties of
mesenchymal stem cells. Cytokine Growth Factor Rev. 20:419–427.
2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang Y, Zhu G, Wang J and Chen J:
Irradiation alters the differentiation potential of bone marrow
mesenchymal stem cells. Mol Med Rep. 13:213–223. 2016.PubMed/NCBI
|
18
|
Islam MS, Stemig ME, Takahashi Y and Hui
SK: Radiation response of mesenchymal stem cells derived from bone
marrow and human pluripotent stem cells. J Radiat Res. 56:269–277.
2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Cao X, Wu X, Frassica D, Yu B, Pang L,
Xian L, Wan M, Lei W, Armour M, Tryggestad E, et al: Irradiation
induces bone injury by damaging bone marrow microenvironment for
stem cells. Proc Natl Acad Sci USA. 108:pp. 1609–1614. 2011;
View Article : Google Scholar : PubMed/NCBI
|
20
|
Guo C, Li C, Yang K, Kang H, Xu X, Xu X
and Deng L: Increased EZH2 and decreased osteoblastogenesis during
local irradiation-induced bone loss in rats. Sci Rep. 6:313182016.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Hou JF, Zhang H, Yuan X, Li J, Wei YJ and
Hu SS: In vitro effects of low-level laser irradiation for bone
marrow mesenchymal stem cells: Proliferation, growth factors
secretion and myogenic differentiation. Lasers Surg Med.
40:726–733. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Soleimani M, Abbasnia E, Fathi M, Sahraei
H, Fathi Y and Kaka G: The effects of low-level laser irradiation
on differentiation and proliferation of human bone marrow
mesenchymal stem cells into neurons and osteoblasts-an in vitro
study. Lasers Med Sci. 27:423–430. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Choong PF, Mok PL, Cheong SK, Leong CF and
Then KY: Generating neuron-like cells from BM-derived mesenchymal
stromal cells in vitro. Cytotherapy. 9:170–183. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Khadra M, Lyngstadaas SP, Haanaes HR and
Mustafa K: Effect of laser therapy on attachment, proliferation and
differentiation of human osteoblast-like cells cultured on titanium
implant material. Biomaterials. 26:3503–3509. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ozawa Y, Shimizu N, Kariya G and Abiko Y:
Low-energy laser irradiation stimulates bone nodule formation at
early stages of cell culture in rat calvarialcells. Bone.
22:347–54. 1998. View Article : Google Scholar : PubMed/NCBI
|
26
|
Galotto M, Berisso G, Delfino L, Podesta
M, Ottaggio L, Dallorso S, Dufour C, Ferrara GB, Abbondandolo A,
Dini G, et al: Stromal damage as consequence of high-dose
chemo/radiotherapy in bone marrow transplant recipients. Exp
Hematol. 27:1460–1466. 1999. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hopewell JW: Radiation-therapy effects on
bone density. Med Pediatr Oncol. 41:208–211. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hamilton SA, Pecaut MJ, Gridley DS, Travis
ND, Bandstra ER, Willey JS, Nelson GA and Bateman TA: A murine
model for bone loss from therapeutic and space-relevant sources of
radiation. J Appl Physiol (1985). 101:789–793. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Grigsby PW, Roberts HL and Perez CA:
Femoral neck fracture following groin irradiation. Int J
RadiatOncol Biol Phys. 32:63–67. 1995. View Article : Google Scholar
|
30
|
Bonyadi M, Waldman SD, Liu D, Aubin JE,
Grynpas MD and Stanford WL: Mesenchymal progenitor self-renewal
deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null
mice. Proc Natl Acad Sci USA. 100:pp. 5840–5845. 2003; View Article : Google Scholar : PubMed/NCBI
|
31
|
Willey JS, Livingston EW, Robbins ME,
Bourland JD, Tirado-Lee L, Smith-Sielicki H and Bateman TA:
Risedronate prevents early radiation-induced osteoporosis in mice
at multiple skeletal locations. Bone. 46:101–111. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kondo H, Searby ND, Mojarrab R, Phillips
J, Alwood J, Yumoto K, Almeida EA, Limoli CL and Globus RK:
Total-body irradiation of postpubertal mice with (137)Cs acutely
compromises the microarchitecture of cancellous bone and increases
osteoclasts. Radiat Res. 171:283–289. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Willey JS, Lloyd SA, Robbins ME, Bourland
JD, Smith-Sielicki H, Bowman LC, Norrdin RW and Bateman TA: Early
increase in osteoclast number in mice after whole-body irradiation
with 2 Gy X rays. Radiat Res. 170:388–392. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zwahlen DR, Bischoff LI, Gruber G, Sumila
M and Schneider U: Estimation of second cancer risk after
radiotherapy for rectal cancer: Comparison of 3D conformal
radiotherapy and volumetric modulated arc therapy using different
high dose fractionation schemes. Radiat Oncol. 11:1492016.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Rades D, Sehmisch L, Bajrovic A, Janssen S
and Schild SE: Comparison of 20×2 Gy and 12×3 Gy for Whole-brain
Irradiation of multiple brain metastases from malignant melanoma.
In Vivo. 30:917–919. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Piao H, Chu X, Lv W and Zhao Y:
Involvement of receptor-interacting protein 140 in
estrogen-mediated osteoclasts differentiation, apoptosis, and bone
resorption. J Physiol Sci. 67:141–150. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chuang SC, Chen CH, Fu YC, Tai IC, Li CJ,
Chang LF, Ho ML and Chang JK: Estrogen receptor mediates
simvastatin-stimulated osteogenic effects in bone marrow
mesenchymal stem cells. Biochem Pharmacol. 98:453–464. 2015.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Deng Z, Huang H, Wu X, Wu M, He G and Guo
J: Distinct expression of various angiogenesis factors in mice
brain after whole-brain irradiation by X-ray. Neurochem Res.
42:625–633. 2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kleibeuker EA, Fokas E, Allen PD,
Kersemans V, Griffioen AW, Beech J, Im JH, Smart SC, Castricum KC,
van den Berg J, et al: Low dose angiostatic treatment counteracts
radiotherapy-induced tumor perfusion and enhances the anti-tumor
effect. Oncotarget. 7:76613–76627. 2016.PubMed/NCBI
|
40
|
Ma J, Shi M, Li J, Chen B, Wang H, Li B,
Hu J, Cao Y, Fang B and Zhao RC: Senescence-unrelated impediment of
osteogenesis from Flk1+ bone marrow mesenchymal stem cells induced
by total body irradiation and its contribution to long-term bone
and hematopoietic injury. Haematologica. 92:889–896. 2007.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Quarles LD, Yohay DA, Lever LW, Caton R
and Wenstrup RJ: Distinct proliferative and differentiated stages
of murine MC3T3-E1 cells in culture: an in vitro model of
osteoblast development. J Bone Miner Res. 7:683–692. 1992.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Luo X, Chen J, Song WX, Tang N, Luo J,
Deng ZL, Sharff KA, He G, Bi Y, He BC, et al: Osteogenic BMPs
promote tumor growth of human osteosarcomas that harbor
differentiation defects. Lab Invest. 88:1264–1277. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Owen TA, Aronow M, Shalhoub V, Barone LM,
Wilming L, Tassinari MS, Kennedy MB, Pockwinse S, Lian JB and Stein
GS: Progressive development of the rat osteoblast phenotype in
vitro: Reciprocal relationships in expression of genes associated
with osteoblast proliferation and differentiation during formation
of the bone extracellular matrix. J Cell Physio. 143:420–430. 1990.
View Article : Google Scholar
|
44
|
Komori T, Yagi H, Nomura S, Yamaguchi A,
Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, et al:
Targeted disruption of Cbfa1 results in a complete lack of bone
formation owing to maturational arrest of osteoblasts. Cell.
89:755–764. 1997. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhu L and Xu PC: Downregulated LncRNA-ANCR
promotes osteoblast differentiation by targeting EZH2 and
regulating Runx2 expression. Biochem Biophys Res Commun.
432:612–617. 2013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Wagner J, Kean T, Young R, Dennis JE and
Caplan AI: Optimizing mesenchymal stem cell-based therapeutics.
Curr Opin Biotechnol. 20:531–536. 2009. View Article : Google Scholar : PubMed/NCBI
|
47
|
Filip S, Mokrý J and Hruska I: Adult stem
cells and their importance in cell therapy. Folia Biol (Praha).
49:9–14. 2003.PubMed/NCBI
|
48
|
Green DE, Adler BJ, Chan ME and Rubin CT:
Devastation of adult stem cell pools by irradiation precedes
collapse of trabecular bone quality and quantity. J Bone Miner Res.
27:749–659. 2012. View Article : Google Scholar : PubMed/NCBI
|
49
|
Harrison DE, Astle CM and Delaittre JA:
Loss of proliferative capacity in immunohemopoietic stem cells
caused by serial transplantation rather than aging. J Exp Med.
147:1526–1531. 1978. View Article : Google Scholar : PubMed/NCBI
|
50
|
Harrison DE and Astle CM: Loss of stem
cell repopulating ability upon transplantation. Effects of donor
age, cell number, and transplantation procedure. J Exp Med.
156:1767–1779. 1982. View Article : Google Scholar : PubMed/NCBI
|
51
|
Werts ED, Gibson DP, Knapp SA and DeGowin
RL: Stromal cell migration precedes hemopoietic repopulation of the
bone marrow after irradiation. Radiat Res. 81:20–30. 1980.
View Article : Google Scholar : PubMed/NCBI
|