Research and progress on ClC‑2 (Review)
- Authors:
- Hongwei Wang
- Minghui Xu
- Qingjie Kong
- Peng Sun
- Fengyun Yan
- Wenying Tian
- Xin Wang
-
Affiliations: Department of Ophthalmology, People's Hospital of Jingjiang, Jingjiang, Jiangsu 214500, P.R. China, Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China, School of Computer Science and Information Technology, Northeast Normal University, Changchun, Jilin 130024, P.R. China, Department of Ophthalmology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China, Assets Division, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, P.R. China - Published online on: May 18, 2017 https://doi.org/10.3892/mmr.2017.6600
- Pages: 11-22
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Strange K: Of mice and worms: Novel insights into ClC-2 anion channel physiology. News Physiol Sci. 17:11–16. 2002.PubMed/NCBI | |
Gründer S, Thiemann A, Pusch M and Jentsch TJ: Regions involved in the opening of ClC-2 chloride channel by voltage and cell volume. Nature. 360:759–762. 1992. View Article : Google Scholar : PubMed/NCBI | |
Thiemann A, Gründer S, Pusch M and Jentsch TJ: A chloride channel widely expressed in epithelial and non-epithelial cells. Nature. 356:57–60. 1992. View Article : Google Scholar : PubMed/NCBI | |
Furukawa T, Ogura T, Katayama Y and Hiraoka M: Characteristics of rabbit ClC-2 current expressed in Xenopus oocytes and its contribution to volume regulation. Am J Physiol. 274:C500–C512. 1998.PubMed/NCBI | |
Bi MM, Hong S, Zhou HY, Wang HW, Wang LN and Zheng YJ: Chloride channelopathies of ClC-2. Int J Mol Sci. 15:218–249. 2013. View Article : Google Scholar : PubMed/NCBI | |
Middleton RE, Pheasant DJ and Miller C: Homodimeric architecture of a ClC-type chloride ion channel. Nature. 383:337–340. 1996. View Article : Google Scholar : PubMed/NCBI | |
Hsiao SH, Parrish AR, Nahm SS, Abbott LC, McCool BA and Frye GD: Effects of early postnatal ethanol intubation on GABAergic synaptic proteins. Brain Res Dev Brain Res. 138:177–185. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zúñiga L, Niemeyer MI, Varela D, Catalán M, Cid LP and Sepulveda FV: The voltage-dependent ClC-2 chloride channel has a dual gating mechanism. J Physiol. 555:671–682. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jentsch TJ, Stein V, Weinreich F and Zdebik AA: Molecular structure and physiological function of chloride channels. Physiol Rev. 82:503–568. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jordt SE and Jentsch TJ: Molecular dissection of gating in the ClC-2 chloride channel. EMBO J. 16:1582–1592. 1997. View Article : Google Scholar : PubMed/NCBI | |
Bösl MR, Stein V, Hübner C, Zdebik AA, Jordt SE, Mukhophadhyay AK, Davidoff MS, Holstein AF and Jentsch TJ: Male germ cells and photoreceptors, both depending on close cell-cell interactions, degenerate upon ClC-2 Cl(−) channel disruption. EMBO J. 20:1289–1299. 2001. View Article : Google Scholar : PubMed/NCBI | |
Huber S, Braun G, Schröppel B and Horster M: Chloride channels ClC-2 and ICln mRNA expression differs in renal epithelial ontogeny. Kidney Int Suppl. 67:S149–S151. 1998. View Article : Google Scholar : PubMed/NCBI | |
Gyömörey K, Yeger H, Ackerley C, Garami E and Bear CE: Expression of the chloride channel ClC-2 in the murine small intestine epithelium. Am J Physiol Cell Physiol. 279:C1787–C1794. 2000.PubMed/NCBI | |
Bali M, Lipecka J, Edelman A and Fritsch J: Regulation of ClC-2 chloride channels in T84 cells by TGF-alpha. Am J Physiol Cell Physiol. 280:C1588–C1598. 2001.PubMed/NCBI | |
Mohammad-Panah R, Gyomorey K, Rommens J, Choudhury M, Li C, Wang Y and Bear CE: ClC-2 contributes to native chloride secretion by a human intestinal cell line, Caco-2. J Biol Chem. 276:8306–8313. 2001. View Article : Google Scholar : PubMed/NCBI | |
Catalán M, Cornejo I, Figueroa CD, Niemeyer MI, Sepúlveda FV and Cid LP: ClC-2 in guinea pig colon: mRNA. immunolabeling, and functional evidence for surface epithelium localization. Am J Physiol Gastrointest Liver Physiol. 283:G1004–G1013. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lipecka J, Bali M, Thomas A, Fanen P, Edelman A and Fritsch J: Distribution of ClC-2 chloride channel in rat and human epithelial tissues. Am J Physiol Cell Physiol. 282:C805–C816. 2002. View Article : Google Scholar : PubMed/NCBI | |
Malinowska DH, Kupert EY, Bahinski A, Sherry AM and Cuppoletti J: Cloning: Functional expression, and characterization of a PKA-activated gastric Cl-channel. Am J Physiol. 268:C191–C200. 1995.PubMed/NCBI | |
Sherry AM, Malinowska DH, Morris RE, Ciraolo GM and Cuppoletti J: Localization of ClC-2 Cl- channels in rabbit gastric mucosa. Am J Physiol Cell Physiol. 280:C1599–C1606. 2001.PubMed/NCBI | |
Roman RM, Smith RL, Feranchak AP, Clayton GH, Doctor RB and Fitz JG: ClC-2 chloride channels contribute to HTC cell volume homeostasis. Am J Physiol Gastrointest Liver Physiol. 280:G344–G353. 2001.PubMed/NCBI | |
Cid LP, Montrose-Rafizadeh C, Smith DI, Guggino WB and Cutting GR: Cloning of a putative human voltage-gated chloride channel (ClC-2) cDNA widely expressed in human tissues. Hum Mol Genet. 4:407–413. 1995. View Article : Google Scholar : PubMed/NCBI | |
Sherry AM, Stroffekova K, Knapp LM, Kupert EY, Cuppoletti J and Malinowska DH: Characterization of the human pH- and PKA-activated ClC-2G(2 alpha) Cl- channel. Am J Physiol. 273:C384–C393. 1997.PubMed/NCBI | |
Schwiebert EM, Cid-Soto LP, Stafford D, Carter M, Blaisdell CJ, Zeitlin PL, Guggino WB and Cutting GR: Analysis of ClC-2 channels as an alternative pathway for chloride conduction in cystic fibrosis airway cells. Proc Natl Acad Sci USA. 95:3879–3884. 1998. View Article : Google Scholar : PubMed/NCBI | |
Blaisdell CJ, Edmonds RD, Wang XT, Guggino S and Zeitlin PL: pH-regulated chloride secretion in fetal lung epithelia. Am J Physiol Lung Cell Mol Physiol. 278:L1248–L1255. 2000.PubMed/NCBI | |
Cuppoletti J, Tewari KP, Sherry AM, Kupert EY and Malinowska DH: ClC-2 CI- channels in human lung epithelia: Activation by arachidonic acid, amidation, and acid-activated omeprazole. Am J Physiol Cell Physiol. 281:C46–C54. 2001.PubMed/NCBI | |
Murray CB, Morales MM, Flotte TR, McGrath-Morrow SA, Guggino WB and Zeitlin PL: ClC-2: A developmentally dependent chloride channel expressed in the fetal lung and downregulated after birth. Am J Respir Cell Mol Biol. 12:597–604. 1995. View Article : Google Scholar : PubMed/NCBI | |
Enz R, Ross BJ and Cutting GR: Expression of the voltage-gated chloride channel ClC-2 in rod bipolar cells of the rat retina. J Neurosci. 19:9841–9847. 1999.PubMed/NCBI | |
Park K, Arreola J, Begenisich T and Melvin JE: Comparison of voltage-activated CI- channels in rat parotid acinar cells with ClC-2 in a mammalian expression system. J Membr Biol. 163:87–95. 1998. View Article : Google Scholar : PubMed/NCBI | |
Britton FC, Hatton WJ, Rossow CF, Duan D, Hume JR and Horowitz B: Molecular distribution of volume-regulated chloride channels (ClC-2 and ClC-3) in cardiac tissues. Am J Physiol Heart Circ Physiol. 279:H2225–H2233. 2000.PubMed/NCBI | |
Sik A, Smith RL and Freund TF: Distribution of chloride channel-2-immunoreactive neuronal and astrocytic processes in the hippocampus. Neuroscience. 101:51–65. 2000. View Article : Google Scholar : PubMed/NCBI | |
Srinivas SP, Maertens C, Goon LH, Goon L, Satpathy M, Yue BY, Droogmans G and Nilius B: Cell volume response to hyposmotic shock and elevated cAMP in bovine trabecular meshwork cells. Exp Eye Res. 78:15–26. 2004. View Article : Google Scholar : PubMed/NCBI | |
Comes N, Gasull X, Gual A and Borrás T: Differential expression of the human chloride channel genes in the trabecular meshwork under stress conditions. Exp Eye Res. 80:801–813. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liang W and Zheng YJ: Effect of chloride channel inhibitor in phagocytic process of human trabecular mesh work cells. Chin J Gerontol. 30:906–908. 2010. | |
Wang JX, Wang SM and Liu HY: Expression of ClC-2 Chloride channels in rat trabecular meshwork. Chin J Biologicals. 23:274–276. 2010. | |
Xiong H, Li C, Garami E, Wang Y, Ramjeesingh M, Galley K and Bear CE: ClC-2 activation modulates regulatory volume decrease. J Membr Biol. 167:215–221. 1999. View Article : Google Scholar : PubMed/NCBI | |
Worrell RT, Butt AG, Cliff WH and Frizzell RA: A volume-sensitive chloride conductance in human colonic cell line T84. Am J Physiol. 256:C1111–C1119. 1989.PubMed/NCBI | |
Solc CK and Wine JJ: Swelling-induced and depolarization-induced Cl-channels in normal and cystic fibrosis epithelial cells. Am J Physiol. 261:C658–C674. 1991.PubMed/NCBI | |
Jackson PS and Strange K: Single-channel properties of a volume-sensitive anion conductance. Current activation occurs by abrupt switching of closed channels to an open state. J Gen Physiol. 105:643–660. 1995. View Article : Google Scholar : PubMed/NCBI | |
Strange K, Emma F and Jackson PS: Cellular and molecular physiology of volume-sensitive anion channels. Am J Physiol. 270:C711–C730. 1996.PubMed/NCBI | |
Smith RL, Clayton GH, Wilcox CL, Escudero KW and Staley KJ: Differential expression of an inwardly rectifying chloride conductance in rat brain neurons: A potential mechanism for cell-specific modulation of postsynaptic inhibition. J Neurosci. 15:4057–4067. 1995.PubMed/NCBI | |
Staley K, Smith R, Schaack J, Wilcox C and Jentsch TJ: Alteration of GABAA receptor function following gene transfer of the CLC-2 chloride channel. Neuron. 17:543–551. 1996. View Article : Google Scholar : PubMed/NCBI | |
Chu S and Zeitlin PL: Alternative mRNA splice variants of the rat ClC-2 chloride channel gene are expressed in lung: Genomic sequence and organization of ClC-2. Nucleic Acids Res. 25:4153–4159. 1997. View Article : Google Scholar : PubMed/NCBI | |
Chu S, Murray CB, Liu MM and Zeitlin PL: A short CIC-2 mRNA transcript is produced by exon skipping. Nucleic Acids Res. 24:3453–3457. 1996. View Article : Google Scholar : PubMed/NCBI | |
Chu S, Blaisdell CJ, Liu MZ and Zeitlin PL: Perinatal regulation of the ClC-2 chloride channel in lung is mediated by Sp1 and Sp3. Am J Physiol. 276:L614–L624. 1999.PubMed/NCBI | |
Dutzler R: The ClC family of chloride channels and transporters. Curr Opin Struct Biol. 16:439–446. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dutzler R: A structural perspective on ClC channel and transporter function. FEBS Lett. 581:2839–2844. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ramjeesingh M, Li C, Huan LJ, Garami E, Wang Y and Bear CE: Quaternary structure of the chloride channel ClC-2. Biochemistry. 39:13838–13847. 2000. View Article : Google Scholar : PubMed/NCBI | |
Varela D, Niemeyer MI, Cid LP and Sepúlveda FV: Effect of an N-terminus deletion on voltage-dependent gating of the ClC-2 chloride channel. J Physiol. 544:363–372. 2002. View Article : Google Scholar : PubMed/NCBI | |
Stölting G, Fischer M and Fahlke C: ClC-1 and ClC-2 form hetero-dimeric channels with novel protopore functions. Pflugers Arch. 466:2191–2204. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fritsch J and Edelman A: Modulation of the hyperpolarization-activated Cl- current in human intestinal T84 epithelial cells by phosphorylation. J Physiol. 490:115–128. 1996. View Article : Google Scholar : PubMed/NCBI | |
Flores CA, Niemeyer MI, Sepúlveda FV and Cid LP: Two splice variants derived from a Drosophila melanogaster candidate ClC gene generate ClC-2-type Cl- channels. Mol Membr Biol. 23:149–156. 2006. View Article : Google Scholar : PubMed/NCBI | |
Qu C, Liang F, Smythe NM and Schulte BA: Identification of ClC-2 and CIC-K2 chloride channels in cultured rat type IV spiral ligament fibrocytes. J Assoc Res Otolaryngol. 8:205–219. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fritsch J and Edelman A: Osmosensitivity of the hyperpolarization-activated chloride current in human intestinal T84 cells. Am J Physiol. 272:C778–C786. 1997.PubMed/NCBI | |
Speakem T, Kajitam H, Smith CP and Brown PD: Inward-rectifying anion channels are expressed in the epithelial cells of choroid plexus isolated from ClC-2 ‘knock-out’ mice. J Physiol. 539:385–390. 2002. View Article : Google Scholar : PubMed/NCBI | |
Valverde MA, Mintenig GM and Sepúlveda FV: Differential effects of tamoxifen and I- on three distinguishable chloride currents activated in T84 intestinal cells. Pflugers Arch. 425:552–554. 1993. View Article : Google Scholar : PubMed/NCBI | |
Chesnoy-Marchais D: Hyperpolarization-activated chloride channels in Aplysi a neurons. In Chloride Channels and Carriers in Nerve Muscle and Glial Cells Alvarez-Leefmans. Russell JMFJ: USA: New York Plenum Press; 14. pp. 367–382. 1990 | |
Arreola J, Park K, Melvin JE and Begenisich T: Three distinct chloride channels control anion movements in rat parotid acinar cells. J Physiol. 490:351–362. 1996. View Article : Google Scholar : PubMed/NCBI | |
Díaz M, Valverde MA, Higgins CF, Rucăreanu C and Sepúlveda FV: Volume-activated chloride channels in HeLa cells are blocked by verapamil and dideoxyforskolin. Pflugers Arch. 422:347–353. 1993. View Article : Google Scholar : PubMed/NCBI | |
Bond TD, Ambikapathy S, Mohammad S and Valverde MA: Osmosensitive C1- currents and their relevance to regulatory volume decrease in human intestinal T84 cells: Outwardly vs. Inwardly rectifying currents. J Physiol. 511:45–54. 1998. View Article : Google Scholar : PubMed/NCBI | |
Furukawa T, Horikawa S, Terai T, Ogura T, Katayama Y and Hiraoka M: Molecular cloning and characterization of a novel truncated from (ClC-2 beta) of ClC-2 alpha (ClC-2G) in rabbit heart. FEBS Lett. 375:56–62. 1995. View Article : Google Scholar : PubMed/NCBI | |
Chamberlin ME and Strange K: Anisosmotic cell volume regulation: A comparative view. Am J Physiol. 257:C159–C173. 1989.PubMed/NCBI | |
Nehrke K, Arreola J, Nguyen HV, Pilato J, Richardson L, Okunade G, Baggs R, Shull GE and Melvin JE: Loss of hyperpolarization-activated Cl(−) current in salivary acinar cells from Clcn2 knockout mice. J Biol Chem. 277:23604–23611. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nighot MP, Nighot PK, Ma TY, Malinowska DH, Shull GE, Cuppoletti J and Blikslager AT: Genetic ablation of the ClC-2 Cl- Channel disrupts mouse gastric parietal cell acid secretion. PLoS One. 10:e01381742015. View Article : Google Scholar : PubMed/NCBI | |
Hori K, Takahashi Y, Horikawa N, Furukawa T, Tsukada K, Takeguchi N and Sakai H: Is the ClC-2 chloride channel involved in the Cl- secretory mechanism of gastric parietal cells? FEBS Lett. 575:105–108. 2004. View Article : Google Scholar : PubMed/NCBI | |
Liang W, Zheng WX, Sun LX and Zheng YJ: Effect of chloride channel 2 on trabecular meshwork cells under pressure stress condition. Chin J Ophthalmol Otorhinolaryngol. 12:26–29. 2012. | |
Ugarte G, Delgado R, O'Day PM, Farjah F, Cid LP, Vergara C and Bacigalupo J: Putative ClC-2 chloride channel mediates inward rectification in Drosophila retinal photoreceptors. J Membr Biol. 207:151–160. 2005. View Article : Google Scholar : PubMed/NCBI | |
Comes N, Abad E, Morales M, Borrás T, Gual A and Gasull X: Identification and functional characterization of ClC-2 chloride channels in trabecular meshwork cells. Exp Eye Res. 83:877–889. 2006. View Article : Google Scholar : PubMed/NCBI | |
Murray CB, Chu S and Zeitlin PL: Gestational and tissue-specific regulation of C1C-2 chloride channel expression. Am J Physiol. 271:L829–L837. 1996.PubMed/NCBI | |
Zhou L, Graeff RW, McCray PB Jr, Simonet WS and Whitsett JA: Keratinocyte growth factor stimulates CFTR-independent fluid secretion in the fetal lung in vitro. Am J Physiol. 271:L987–L994. 1996.PubMed/NCBI | |
Blaisdell CJ, Morales MM, Andrade AC, Bamford P, Wasicko M and Welling P: Inhibition of CLC-2 chloride channel expression interrupts expansion of fetal lung cysts. Am J Physiol Lung Cell Mol Physiol. 286:L420–L426. 2004. View Article : Google Scholar : PubMed/NCBI | |
Duan D, Ye L, Britton F, Horowitz B and Hume JR: A novel anionic inward rectifier in native cardiac myocytes. Circ Res. 86:E63–E71. 2000. View Article : Google Scholar : PubMed/NCBI | |
Britton FC, Wang GL, Huang ZM, Ye L, Horowitz B, Hume JR and Duan D: Functional characterization of novel alternatively spliced ClC-2 chloride channel variants in the heart. J Biol Chem. 280:25871–25880. 2005. View Article : Google Scholar : PubMed/NCBI | |
Huang ZM, Prasad C, Britton FC, Ye LL, Hatton WJ and Duan D: Functional role of CLC-2 chloride inward rectifier channels in cardiac sinoatrial nodal pacemaker cells. Mol Cell Cardiol. 47:121–132. 2009. View Article : Google Scholar | |
Komukai K, Brette F and Orchard CH: Electrophysiological response of rat atrial myocytes to acidosis. Am J Physiol Heart Circ Physiol. 283:H715–H724. 2002. View Article : Google Scholar : PubMed/NCBI | |
Komukai K, Brette F, Pascarel C and Orchard CH: Electrophysiological response of rat ventricular myocytes to acidosis. Am J Physiol Heart Circ Physiol. 283:H412–H422. 2002. View Article : Google Scholar : PubMed/NCBI | |
Földy C, Lee SH, Morgan RJ and Soltesz I: Regulation of fast-spiking basket cell synapses by the chloride channel ClC-2. Nat Neurosci. 13:1047–1049. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cid LP, Niemeyer MI, Ramírez A and Sepúlveda FV: Splice variants of a ClC-2 chloride channel with differing functional characteristics. Am J Physiol Cell Physiol. 279:C1198–C1210. 2000.PubMed/NCBI | |
Garcia-Olivares J, Alekov A, Boroumand MR, Begemann B, Hidalgo P and Fahlke C: Gating of human ClC-2 chloride channels and regulation by carboxy-terminal domains. J Physiol. 586:5325–5336. 2008. View Article : Google Scholar : PubMed/NCBI | |
Eckmann L and Gillin FD: Microbes and microbial toxins: Paradigms for microbial-mucosal interactions I. Pathophysiological aspects of enteric infections with the lumen dwelling protozoan pathogen Giardia lamblia. Am J Physiol Gastrointest Liver Physiol. 280:G1–G6. 2001.PubMed/NCBI | |
Upcroft P and Upcroft JA: Drug targets and mechanisms of resistance in the anaerobic protozoa. Clin Microbiol Rev. 14:150–164. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hawrelak J: Giardiasis: Pathophysiology and management. Altern Med Rev. 8:129–142. 2003.PubMed/NCBI | |
Moreno-Galindo EG, Rodríguez-Elías JC, Ramírez-Herrera MA, Sánchez-Chapula JA and Navarro-Polanco RA: The principal conductance in Giardia lamblia trophozoites possesses functional properties similar to the mammalian ClC-2 current. Pflugers Arch. 466:915–924. 2014. View Article : Google Scholar : PubMed/NCBI | |
Villaz M, Cinniger JC and Moody WJ: A voltage-gated chloride channel in ascidian embryos modulated by both the cell cycle clock and cell volume. J Physiol. 488:689–699. 1995. View Article : Google Scholar : PubMed/NCBI | |
Okada Y: Volume expansion-sensing outward-rectifier Cl- channel: Fresh start to the molecular identity and volume sensor. Am J Physiol. 273:C755–C789. 1997.PubMed/NCBI | |
Tilly BC, van den Berghe N, Tertoolen LG, Edixhoven MJ and de Jonge HR: Protein tyrosine phosphorylation is involved in osmoregulation of ionic conductances. J Biol Chem. 268:19919–19922. 1993.PubMed/NCBI | |
Sorota S: Tyrosine protein kinase inhibitors prevent activation of cardiac swelling-Induced chloride current. Pflugers Arch. 431:178–185. 1995. View Article : Google Scholar : PubMed/NCBI | |
Voets T, Manolopoulos V, Eggermont J, Ellory C, Droogmans G and Nilius B: Regulation of a swelling-activated chloride current in bovine endothelium by protein tyrosine phosphorylation and G proteins. J Physiol. 506:341–352. 1998. View Article : Google Scholar : PubMed/NCBI | |
Lepple-Wienhues A, Szabò I, Laun T, Kaba NK, Gulbins E and Lang F: The tyrosine kinase p56lck mediates activation of swelling-induced chloride channels in lymphocytes. J Cell Biol. 141:281–286. 1998. View Article : Google Scholar : PubMed/NCBI | |
Santos Ornellas D, Grozovsky R, Goldenberg RC, Carvalho DP, Fong P, Guggino WB and Morales M: Thyroid hormone modulates ClC-2 chloride channel gene expression in rat renal proximal tubules. J Endocrinol. 178:503–511. 2003. View Article : Google Scholar : PubMed/NCBI | |
Nascimento DS, Reis CU, Goldenberg RC, Ortiga-Carvalho TM, Pazos-Moura CC, Guggino SE, Guggino WB and Morales MM: Estrogen modulates ClC-2 chloride channel gene expression in rat kidney. Pflugers Arch. 446:593–599. 2003. View Article : Google Scholar : PubMed/NCBI | |
Morales MM, Nascimento DS, Capella MA, Lopes AG and Guggino WB: Arginine vasopressin regulates CFTR and ClC-2 mRNA expression in rat kidney cortex and medulla. Pflugers Arch. 443:202–211. 2001. View Article : Google Scholar : PubMed/NCBI | |
Moeser AJ, Haskell MM, Shifflett DE, Little D, Schultz BD and Blikslager AT: ClC-2 chloride secretion mediates prostaglandin-induced recovery of barrier function in ischemia-injured porcine ileum. Gastroenterology. 127:802–815. 2004. View Article : Google Scholar : PubMed/NCBI | |
Moeser AJ, Nighot PK, Engelke KJ, Ueno R and Blikslager AT: Recovery of mucosal barrier function in ischemic porcine ileum and colon is stimulated by a novel agonist of the ClC-2 chloride channel, lubiprostone. Am J Physiol Gastrointest Liver Physiol. 292:G647–G656. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cuppoletti J, Malinowska DH, Tewari KP, Li QJ, Sherry AM, Patchen ML and Ueno R: SPI-0211 activates T84 cell chloride transport and recombinant human ClC-2 chloride currents. Am J Physiol Cell Physiol. 287:C1173–C1183. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bao HF, Liu L, Self J, Duke BJ, Ueno R and Eaton DC: A synthetic prostone activates apical chloride channels in A6 epithelial cells. Am J Physiol Gastrointest Liver Physiol. 295:G234–G251. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bijvelds MJ, Bot AG, Escher JC and De Jonge HR: Activation of intestinal Cl- secretion by lubiprostone requires the cystic fibrosis transmembrane conductance regulator. Gastroenterology. 137:976–985. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ao M, Venkatasubramanian J, Boonkaewwan C, Ganesan N, Syed A, Benya RV and Rao MC: Lubiprostone activates Cl- secretion via cAMP signaling and increases membrane CFTR in the human colon carcinoma cell line, T84. Dig Dis Sci. 56:339–351. 2011. View Article : Google Scholar : PubMed/NCBI | |
Norimatsu Y, Moran AR and MacDonald KD: Lubiprostone activates CFTR, but not ClC-2, via the prostaglandin receptor (EP(4)). Biochem Biophys Res Commun. 426:374–379. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Pridgen TA and Blikslager AT: Pharmaceutical activation or genetic absence of ClC-2 alters tight junctions during experimental colitis. Inflamm Bowel Dis. 21:2747–2757. 2015. View Article : Google Scholar : PubMed/NCBI | |
Qiu SB, Liang Y and Liu P: Effect of ClC-2 ClC-3 CFTR expression in rats affected with the myocardial ischemia reperfusion injury by Chinese native medicine compound Guangxinkang. Chin J Integrative Med Cardio-/Cerebrovascular Dis. 11:1482–1485. 2013. | |
Dhani SU, Mohammad-Panah R, Ahmed N, Ackerley C, Ramjeesingh M and Bear CE: Evidence for a functional interaction between the ClC-2 chloride channel and the retrograde motor dynein complex. J Biol Chem. 278:16262–16270. 2003. View Article : Google Scholar : PubMed/NCBI | |
Furukawa T, Ogura T, Zheng YJ, Tsuchiya H, Nakaya H, Katayama Y and Inagaki N: Phosphorylation and functional regulation of ClC-2 chloride channels expressed in Xenopus oocytes by M cyclin-dependent protein kinase. J Physiol. 540:883–893. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zheng YJ, Furukawa T, Ogura T, Tajimi K and Inagaki NM: M phase-specific expression and phosphorylation-dependent ubiquitination of the ClC-2 channel. J Biol Chem. 277:32268–32273. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ahmed N, Ramjeesingh M, Wong S, Varga A, Garami E and Bear CE: Chloride channel activity of ClC-2 is modified by the actin cytoskeleton. Biochem J. 352:789–794. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hinzpeter A, Lipecka J, Brouillard F, Baudoin-Legros M, Dadlez M, Edelman A and Fritsch J: Association between Hsp90 and the ClC-2 chloride channel upregulates channel function. Am J Physiol Cell Physiol. 290:C45–C56. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pérez-Rius C, Gaitán-Peñas H, Estévez R and Barrallo-Gimeno A: Identification and characterization of the zebrafish ClC-2 chloride channel orthologs. Pflugers Arch. 467:1769–1781. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chu S, Blaisdell CJ, Bamford P and Ferro TJ: Interferon-gamma regulates ClC-2 chloride channel in lung epithelial cells. Biochem Biophys Res Commun. 324:31–39. 2004. View Article : Google Scholar : PubMed/NCBI | |
Palmada M, Dieter M, Boehmer C, Waldegger S and Lang F: Serum and glucocorticoid inducible kinases functionally regulate ClC-2 channels. Biochem Biophys Res Commun. 321:1001–1006. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hosseinzadeh Z, Bhavsar SK and Lang F: Downregulation of ClC-2 by JAK2. Cell Physiol Biochem. 29:737–742. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lang F, Föller M, Lang K, Lang P, Ritter M, Vereninov A, Szabo I, Huber SM and Gulbins E: Cell volume regulatory ion channels in cell proliferation and cell death. Methods Enzymol. 428:209–225. 2007. View Article : Google Scholar : PubMed/NCBI | |
Warsi J, Elvira B, Hosseinzadeh Z, Shumilina E and Lang F: Downregulation of chloride channel ClC-2 by Janus kinase 3. J Membr Biol. 247:387–393. 2014. View Article : Google Scholar : PubMed/NCBI | |
Klaus F, Laufer J, Czarkowski K, Strutz-Seebohm N, Seebohm G and Lang F: PIKfyve-dependent regulation of the Cl- channel ClC-2. Biochem Biophys Res Commun. 381:407–411. 2009. View Article : Google Scholar : PubMed/NCBI | |
Park K, Begenisich T and Melvin JE: Protein kinase A activation phosphorylates the rat ClC-2 Cl- channel but does not change activity. J Membr Biol. 182:31–37. 2001. View Article : Google Scholar : PubMed/NCBI | |
Warsi J, Hosseinzadeh Z, Elvira B, Bissinger R, Shumilina E and Lang F: Regulation of ClC-2 activity by SPAK and OSR1. Kidney Blood Press Res. 39:378–387. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vij N and Zeitlin PL: Regulation of the ClC-2 lung epithelial chloride channel by glycosylation of SP1. Am J Respir Cell Mol Biol. 34:754–759. 2006. View Article : Google Scholar : PubMed/NCBI | |
Holmes KW, Hales R, Chu S, Maxwell MJ, Mogayzel PJ Jr and Zeitlin PL: Modulation of Sp1 and Sp3 in lung epithelial cells regulates ClC-2 chloride channel expression. Am J Respir Cell Mol Biol. 29:499–505. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cuppoletti J, Chakrabarti J, Tewari KP and Malinowska DH: Differentiation between human ClC-2 and CFTR Cl- channels with pharmacological agents. Am J Physiol Cell Physiol. 307:C479–C492. 2014. View Article : Google Scholar : PubMed/NCBI | |
Thompson CH, Olivetti PR, Fuller MD, Freeman CS, McMaster D, French RJ, Pohl J, Kubanek J and McCarty NA: Isolation and characterization of a high affinity peptide inhibitor of ClC-2 chloride channels. J Biol Chem. 284:26051–26062. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Quan H, Ma T, Tian Y, Cai Q and Li H: 4,4′-Diisothiocyanostilbene-2,2′-disulfonic Acid (DIDS) ameliorates ischemia-hypoxia-induced white matter damage in neonatal rats through inhibition of the voltage-gated chloride channel ClC-2. Int J Mol Sci. 16:10457–10469. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liang W and Zheng YJ: Effect of interfered ClC-2 gene expression on cell cycle of human trabecular mesh work cells. Chin J Gerontol. 30:1070–1072. 2010. | |
Thompson CH, Fields DM, Olivetti PR, Fuller MD, Zhang ZR, Kubanek J and McCarty NA: Inhibition of ClC-2 chloride channels by a peptide component or components of scorpion venom. J Membr Biol. 208:65–76. 2005. View Article : Google Scholar : PubMed/NCBI | |
Baglole CJ, Sigalet DL and Meddings JB: Alpha1-adrenoceptors down-regulate ClC-2 chloride channels in epithelial cells from the acutely denervated jejunum. Eur J Pharmacol. 565:202–206. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huber SM, Duranton C, Henke G, Van De Sand C, Heussler V, Shumilina E, Sandu CD, Tanneur V, Brand V, Kasinathan RS, et al: Plasmodium induces swelling-activated ClC-2 anion channels in the host erythrocyte. J Biol Chem. 279:41444–41452. 2004. View Article : Google Scholar : PubMed/NCBI | |
Stölting G, Teodorescu G, Begemann B, Schubert J, Nabbout R, Toliat MR, Sander T, Nürnberg P, Lerche H and Fahlke C: Regulation of ClC-2 gating by intracellular ATP. Pflugers Arch. 465:1423–1437. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dhani SU, Kim Chiaw P, Huan LJ and Bear CE: ATP depletion inhibits the endocytosis of ClC-2. J Cell Physiol. 214:273–280. 2008. View Article : Google Scholar : PubMed/NCBI | |
Madison DV, Malenka RC and Nicoll RA: Phorbol esters block a voltage-sensitive chloride current in hippocampal pyramidal cells. Nature. 321:695–697. 1986. View Article : Google Scholar : PubMed/NCBI | |
Staley K: The role of an inwardly rectifying chloride conductance in postsynaptic inhibition. J Neurophysiol. 72:273–284. 1994.PubMed/NCBI | |
Rinke I, Artmann J and Stein V: ClC-2 voltage-gated channels constitute part of the background conductance and assist chloride extrusion. J Neurosci. 30:4776–4786. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schriever AM, Friedrich T, Pusch M and Jentsch TJ: CLC chloride channels in Caenorhabditis elegans. J Biol Chem. 274:34238–34244. 1999. View Article : Google Scholar : PubMed/NCBI | |
Nehrke K, Begenisich T, Pilato J and Melvin JE: Into ion channel and transporter function. Caenorhabditis elegans ClC-type chloride channels: Novel variants and functional expression. Am J Physiol Cell Physiol. 279:C2052–C2066. 2000.PubMed/NCBI | |
Denton J, Nehrke K, Rutledge E, Morrison R and Strange K: Alternative splicing of N- and C-termini of a C. Elegans ClC channel alters gating and sensitivity to external Cl- and H+. J Physiol. 555:97–114. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Chung SH, Fang-Yen C, Craig C, Kerr RA, Suzuki H, Samuel AD, Mazur E and Schafer WR: A self-regulating feed-forward circuit controlling C. Elegans egg-laying behavior. Curr Biol. 18:1445–1455. 2008. View Article : Google Scholar : PubMed/NCBI | |
Desai C and Horvitz HR: Caenorhabditis elegans mutants defective in the functioning of the motor neurons responsible for egg laying. Genetics. 121:703–721. 1989.PubMed/NCBI | |
Lickteig KM, Duerr JS, Frisby DL, Hall DH, Rand JB and Miller DM III: Regulation of neurotransmitter vesicles by the homeodomain protein UNC-4 and its transcriptional corepressor UNC-37/groucho in Caenorhabditis elegans cholinergic motor neurons. J Neurosci. 21:2001–2014. 2001.PubMed/NCBI | |
Nathoo AN, Moeller RA, Westlund BA and Hart AC: Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci USA. 98:14000–14005. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kim K and Li C: Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. J Comp Neuro. 475:540–550. 2004. View Article : Google Scholar | |
Branicky R, Miyazaki H, Strange K and Schafer WR: The voltage-gated anion channels encoded by clh-3 regulate egg laying in C. Elegans by modulating motor neuron excitability. J Neurosci. 34:764–775. 2014. View Article : Google Scholar : PubMed/NCBI | |
Niemeyer MI, Cid LP, Yusef YR, Briones R and Sepúlveda FV: Voltage-dependent and -independent titration of specific residues accounts for complex gating of a ClC chloride by extracellular protons. J Physiol. 587:1387–1400. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Rodríguez JE, De Santiago-Castillo JA and Arreola J: Permeant anions contribute to voltage dependence of ClC-2 chloride channel by interacting with the protopore gate. J Physiol. 588:2545–2556. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hinzpeter A, Fritsch J, Borot F, Trudel S, Vieu DL, Brouillard F, Baudouin-Legros M, Clain J, Edelman A and Ollero M: Membrane cholesterol content modulates ClC-2 gating and sensitivity to oxidative stress. J Biol Chem. 282:2423–2432. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cornejo I, Niemeyer MI, Zúñiga L, Yusef YR, Sepúlveda FV and Cid LP: Rapid recycling of ClC-2 chloride channels between plasma membrane and endosomes: Role of a tyrosine endocytosis motif in surface retrieval. J Cell Physio. 221:650–657. 2009. View Article : Google Scholar | |
Light DB, Schwiebert EM, Karlson KH and Stanton BA: Atrial natriuretic peptide inhibits a cation channel in renal inner medullary collecting duct cells. Science. 243:393–395. 1999. | |
Masilamani S, Kim GH, Mitchell C, Wade JB and Knepper MA: Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest. 104:R19–R23. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ewart HS and Klip A: Hormonal regulation of the Na(+)-K(+)-ATPase: Mechanisms underlying rapid and sustained changes in pump activity. Am J Physiol. 269:C295–C311. 1995.PubMed/NCBI | |
Morales MM, Brucoli HCP, Malnic G and Lopes AG: Role of thyroid hormones in renal tubule acidification. Mol Cell Biochem. 154:17–21. 1996. View Article : Google Scholar : PubMed/NCBI | |
Katz AI, Emmanouel DS and Lindheimer MD: Thyroid hormone and the kidney. Nephron. 15:223–249. 1975. View Article : Google Scholar : PubMed/NCBI | |
Shirota T, Shinoda T, Yamada T and Aizawa T: Alteration of renal function in hyperthyroidism: Increased tubular secretion of creatinine and decreased distal tubule delivery of chloride. Metabolism. 41:402–405. 1992. View Article : Google Scholar : PubMed/NCBI | |
Liu XM, Bai Y and Guo ZS: Study on urinary function and metabolism of water and electrolytes in primary hypothyroidism. Zhonghua Nei Ke Za Zhi. 29:299–302.318. 1990.(In Chinese). PubMed/NCBI | |
Capasso G, De Tommaso G, Pica A, Anastasio P, Capasso J, Kinne R and De Santo NG: Effects of thyroid hormones on heart and kidney functions. Miner Electrolyte Metab. 25:57–74. 1999. View Article : Google Scholar | |
Weir RJ, Briggs E, Mack A, Naismith L, Taylor L and Wilson E: Blood pressure in women taking oral contraceptives. Br Med J. 1:533–535. 1974. View Article : Google Scholar : PubMed/NCBI | |
Meade TW, Haines AP, North WR, Chakrabarti R, Howarth DJ and Stirling Y: Haemostatic, lipid, and blood-pressure profiles of women on oral contraceptives containing 50 microgram or 30 microgram oestrogen. Lancet. 2:948–951. 1977. View Article : Google Scholar : PubMed/NCBI | |
Seeger H, Armbruster FP, Mueck AO and Lippert TH: The effect of estradiol on urodilatin production in postmenopausal women. Arch Gynecol Obstet. 262:65–68. 1998. View Article : Google Scholar : PubMed/NCBI | |
Brunette MG and Leclerc M: Effect of estrogen on calcium and sodium transport by the nephron luminal membranes. J Endocrinol. 170:441–450. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ueno R, Osama H, Habe T, Engelke K and Patchen M: Oral SPI-0211 increases intestinal fluid secretion and chloride concentration without altering serum electrolyte levels (Abstract). Gastroenterology. 126:A–298. 2004. | |
Johanson JF, Gargano M, Hollan PC, Patchen ML and Ueno R: Phase III efficacy and safety of RU-0211, a novel chloride channel activator, for the treatment of constipation. Gastroenterology. 124:A482003. View Article : Google Scholar | |
Johanson JF, Gargano MA, Holland PC, Patchen ML and Ueno R: Phase III randomized withdrawal study of RU-0211 a novel chloride channel activator for the treatment of constipation (Abstract). Gastroenterology. 126:A–100. 2004. | |
Lacy BE and Levy LC: Lubiprostone: A chloride channel activator. J Clin Gastroenterol. 41:345–351. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shisheva A, Sbrissa D and Lkonomov O: Cloning, characterization, and expression of a novel Zn2+-binding FYVE finger-containing phosphoinositide kinase in insulin-sensitive cells. Mol Cell Biol. 19:623–634. 1999. View Article : Google Scholar : PubMed/NCBI | |
Morris DL and Rui L: Recent advances in understanding leptin signaling and leptin resistance. Am J Physiol Endocrinol Metab. 297:E1247–E1259. 2009. View Article : Google Scholar : PubMed/NCBI | |
Brooks AJ and Waters MJ: The growth hormone receptor: Mechanism of activation and clinical implications. Nat Rev Endocrinol. 6:515–525. 2010. View Article : Google Scholar : PubMed/NCBI | |
Spivak JL: Narrative review: Thrombocytosis, polycythemia vera, and JAK2 mutations: The phenotypic mimicry of chronic myeloproliferation. Ann Intern Med. 152:300–306. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lopez AF, Hercus TR, Ekert P, Littler DR, Guthridge M, Thomas D, Ramshaw HS, Stomski F, Perugini M, D'Andrea R, et al: Molecular basis of cytokine receptor activation. IUBMB Life. 62:509–518. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tefferi A, Skoda R and Vardiman JW: Myeloproliferative neoplasms: Contemporary diagnosis using histology and genetics. Nat Rev Clin Oncol. 6:627–637. 2009. View Article : Google Scholar : PubMed/NCBI | |
Baskin R, Majumder A and Sayeski PP: The recent medicinal chemistry development of Jak2 tyrosine kinase small molecule inhibitors. Curr Med Chem. 17:4551–4558. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ho K, Valdez F, Garcia R and Tirado CA: JAK2 Translocations in hematological malignancies: Review of the literature. J Assoc Genet Technol. 36:107–109. 2010.PubMed/NCBI | |
Oh ST and Gotlib J: JAK2 V617F and beyond: Role of genetics and aberrant signaling in the pathogenesis of myeloproliferative neoplasms. Expert Rev Hematol. 3:323–337. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tefferi A: Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 24:1128–1138. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pardanani A, Vannucchi AM, Passamonti F, Cervantes F, Barbui T and Tefferi A: JAK inhibitor therapy for myelofibrosis: Critical assessment of value and limitations. Leukemia. 25:218–225. 2011. View Article : Google Scholar : PubMed/NCBI | |
Santos FP and Verstovsek S: JAK2 inhibitors: What's the true therapeutic potential? Blood Rev. 25:53–63. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mahfouz RA, Hoteit R, Salem Z, Bazarbachi A, Mugharbel A, Farhat F, Ziyadeh A, Ibrahim A and Taher A: JAK2 V617F gene mutation in the laboratory work-up of myeloproliferative disorders: Experience of a major referral center in Lebanon. Genet Test Mol Biomarkers. 15:263–265. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gatsios P, Terstegen L, Schliess F, Häussinger D, Kerr IM, Heinrich PC and Graeve L: Activation of the Janus kinase/signal transducer and activator of transcription pathway by osmotic shock. J Biol Chem. 273:22962–22968. 1998. View Article : Google Scholar : PubMed/NCBI | |
Garnovskaya MN, Mukhin YV, Vlasova TM and Raymond JR: Hypertonicity activates Na+/H+ exchange through Janus kinase 2 and calmodulin. J Biol Chem. 278:16908–16915. 2003. View Article : Google Scholar : PubMed/NCBI | |
Uckun FM, Vassilev A, Dibirdik I and Tibbles H: Targeting JAK3 tyrosine kinase-linked signal transduction pathways with rationally-designed inhibitors. Anticancer Agents Med Chem. 7:612–623. 2007. View Article : Google Scholar : PubMed/NCBI | |
de Totero D, Meazza R, Capaia M, Fabbi M, Azzarone B, Balleari E, Gobbi M, Cutrona G, Ferrarini M and Ferrini S: The opposite effects of IL-15 and IL-21 on CLL B cells correlate with differential activation of the JAK/STAT and ERK1/2 pathways. Blood. 111:517–524. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fainstein N, Vaknin I, Einstein O, Zisman P, Ben Sasson SZ, Baniyash M and Ben-Hur T: Neural precursor cells inhibit multiple inflammatory signals. Mol Cell Neurosci. 39:335–341. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nakayama J, Yamamoto M, Hayashi K, Satoh H, Bundo K, Kubo M, Goitsuka R, Farrar MA and Kitamura D: BLNK suppresses pre-B-cell leukemogenesis through inhibition of JAK3. Blood. 113:1483–1492. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim BH, Oh SR, Yin CH, Lee S, Kim EA, Kim MS, Sandoval C, Jayabose S, Bach EA, Lee HK and Baeg GH: MS-1020 is a novel small molecule that selectively inhibits JAK3 activity. Br J Haematol. 148:132–143. 2010. View Article : Google Scholar : PubMed/NCBI | |
Walters DK, Mercher T, Gu TL, O'Hare T, Tyner JW, Loriaux M, Goss VL, Lee KA, Eide CA, Wong MJ, et al: Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell. 10:65–75. 2006. View Article : Google Scholar : PubMed/NCBI | |
Malinge S, Ragu C, Della-Valle V, Pisani D, Constantinescu SN, Perez C, Villeval JL, Reinhardt D, Landman-Parker J, Michaux L, et al: Activating mutations in human acute megakaryoblastic leukemia. Blood. 112:4220–4226. 2008. View Article : Google Scholar : PubMed/NCBI | |
Haan C, Rolvering C, Raulf F, Kapp M, Drückes P, Thoma G, Behrmann I and Zerwes HG: Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors. Chem Biol. 18:314–323. 2011. View Article : Google Scholar : PubMed/NCBI | |
Karin M: Too many transcription factors: Positive and negative interactions. New Biol. 2:126–131. 1990.PubMed/NCBI | |
Latchman DS: Transcription factors: An overview. Int J Biochem Cell Biol. 29:1305–1312. 1997. View Article : Google Scholar : PubMed/NCBI | |
Nandoskar P, Wang Y, Wei R, Liu Y, Zhao P, Lu M, Huang J, Thomas P, Trousdale MD and Ding C: Changes of chloride channels in the lacrimal glands of a rabbit model of Sjögren syndrome. Cornea. 31:273–279. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ding C, Parsa L, Nandoskar P, Zhao P, Wu K and Wang Y: Duct system of the rabbit lacrimal gland: Structural characteristics and role in lacrimal secretion. Invest Ophthalmol Vis Sci. 51:2960–2967. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ouyang WB: Correlation between ClC-2 chloride channel and age related cataract Master's thesis. Dalian Med Univ Dalian. 2013. | |
Li HB, Han DM, Zhong B, Fan EZ and Liu ZY: Expressions of chloride channel ClC-2 and ClC-3 in human nasal polyps. J Clin Otorhinolaryngol. 17:266–277. 2003. | |
Edwards MM, de Evsikova Marín C, Collin GB, Gifford E, Wu J, Hicks WL, Whiting C, Varvel NH, Maphis N, Lamb BT, et al: Photoreceptor degeneration, azoospermia, leukoencephalopathy, and abnormal RPE cellfunction in mice expressing an early stop mutation in CLCN2. Invest Ophthalmol Vis Sci. 51:3264–3272. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xu ZN, Zheng XY, Zhao W, Xin H and Han ZG: Expression and significance of chloride channel ClC-2 in nonsmall-cell lung cancer. Chin J Lab Diagn. 16:60–62. 2012. | |
Diener M, Bertog M, Fromm M and Scharrer E: Segmental heterogeneity of swelling-induced Cl- transport in rat small intestine. Pflugers Arch. 432:293–300. 1996. View Article : Google Scholar : PubMed/NCBI | |
Joo NS, Clarke LL, Han BH, Forte LR and Kim HD: Cloning of ClC-2 chloride channel from murine duodenum and its presence in CFTR knockout mice. Biochim Biophys Acta. 1446:431–437. 1999. View Article : Google Scholar : PubMed/NCBI | |
Catalán MA, Flores CA, González-Begne M, Zhang Y, Sepúlveda FV and Melvin JE: Severe defects in absorptive ion transport in distal colons of mice that lack ClC-2 channels. Gastroenterology. 142:346–354. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lacy BE and Chey WD: Lubiprostone: Chronic constipation and irritable bowel syndrome with constipation. Expert Opin Pharmacother. 10:143–152. 2009. View Article : Google Scholar : PubMed/NCBI | |
Crowell MD, Harris LA, DiBaise JK and Olden KW: Activation of type-2 chloride channels: A novel therapeutic target for the treatment of chronic constipation. Curr Opin Invest Drugs. 8:66–70. 2007. | |
Chen ZY, Wang YG, Yang P, Huang WG, Zhou YS and Feng XS: Relationship between ClC-2 and intestinal mucosal barrier in rats with obstructive jaundice. World Chin J Digestology. 19:2829–2834. 2011. | |
Jiang B, Hattori N, Liu B, Kitagawa K and Inagaki C: Expression of swelling- and/or pH-regulated chloride channels (ClC-2,3,4 and 5) in human leukemic and normal immune cells. Life Sci. 70:1383–1394. 2002. View Article : Google Scholar : PubMed/NCBI | |
Blaisdell CJ, Howard TD, Stern A, Bamford P, Bleecker ER and Stine OC: CLC-2 single nucleotide polymorphisms (SNPs) as potential modifiers of cystic fibrosis disease severity. BMC Med Genet. 5:262004. View Article : Google Scholar : PubMed/NCBI | |
Cuppoletti J, Tewari KP, Sherry AM, Kupert EY and Malinowska DH: Human ClC-2- chloride channels can be activated Potential for therapy in cystic fibrosis. Faseb J. 15:A8472001. | |
Zdebik AA, Cuffe JE, Bertog M, Korbmacher C and Jentsch TJ: Additional disruption of the ClC-2 Cl(−) channel does not exacerbate the cystic fibrosis phenotype of cystic fibrosis transmembrane conductance regulator mouse models. J Biol Chem. 279:22276–22283. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jeworutzki E, López-Hernández T, Capdevila-Nortes X, Sirisi S, Bengtsson L, Montolio M, Zifarelli G, Arnedo T, Müller CS, Schulte U, et al: GlialCAM, a protein defective in a leukodystrophy, serves as a ClC-2 Cl(−) channel auxiliary subunit. Neuron. 73:951–961. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jeworutzki E, Lagostena L, Elorza-Vidal X, López-Hernández T, Estévez R and Pusch M: GlialCAM a CLC-2 Cl(−) channel subunit activates the slow gate of CLC chloride channels. Biophys J. 107:1105–1116. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hoegg-Beiler MB, Sirisi S, Orozco IJ, Ferrer I, Hohensee S, Auberson M, Gödde K, Vilches C, de Heredia ML, Nunes V, et al: Disrupting MLC1 and GlialCAM and ClC-2 interactions in leukodystrophy entails glial chloride channel dysfunction. Nat Commun. 5:34752014. View Article : Google Scholar : PubMed/NCBI | |
Scheper GC, van Berkel CG, Leisle L, de Groot KE, Errami A, Jentsch TJ and Van der Knaap MS: Analysis of CLCN2 as candidate gene for megalencephalic leukoencephalopathy with subcortical cysts. Genet Test Mol Biomarkers. 14:255–257. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gulácsi A, Lee CR, Sik A, Viitanen T, Kaila K, Tepper JM and Freund TF: Cell type-specific differences in chloride-regulatory mechanisms and GABA(A) receptor-mediated inhibition in rat substantia nigra. J Neurosci. 23:8237–8246. 2003.PubMed/NCBI | |
Ferroni S, Marchini C, Nobile M and Rapisarda C: Characterization of an inwardly rectifying chloride conductance expressed by cultured rat cortical astrocytes. Glia. 21:217–227. 1997. View Article : Google Scholar : PubMed/NCBI | |
Nobile M, Pusch M, Rapisarda C and Ferroni S: Single-channel analysis of a ClC-2-like chloride conductance in cultured rat cortical astrocytes. FEBS Lett. 479:10–14. 2000. View Article : Google Scholar : PubMed/NCBI | |
Makara JK, Petheö GL, Tóth A and Spät A: pH-sensitive inwardly rectifying chloride current in cultured rat cortical astrocytes. Glia. 34:52–58. 2001. View Article : Google Scholar : PubMed/NCBI | |
Makara JK, Rappert A, Matthias K, Steinhäuser C, Spät A and Kettenmann H: Astrocytes from mouse brain slices express ClC-2-mediated Cl- currents regulated during development and after injury. Mol Cell Neurosci. 23:521–530. 2003. View Article : Google Scholar : PubMed/NCBI | |
Niemeyer MI, Yusef YR, Cornejo I, Flores CA, Sepúlveda FV and Cid LP: Functional evaluation of human ClC-2 chloride channel mutations associated with idiopathic generalized epilepsies. Physiol Genomics. 19:74–83. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sander T, Schulz H, Saar K, Gennaro E, Riggio MC, Bianchi A, Zara F, Luna D, Bulteau C, Kaminska A, et al: Genome search for susceptibility loci of common idiopathic generalised epilepsies. Hum Mol Genet. 9:1465–1472. 2000. View Article : Google Scholar : PubMed/NCBI | |
Haug K, Warnstedt M, Alekov AK, Sander T, Ramirez A, Poser B, Maljevic S, Hebeisen S, Kubisch C, Rebstock J, et al: Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat Genet. 33:527–532. 2003. View Article : Google Scholar : PubMed/NCBI | |
Blanz J, Schweizer M, Auberson M, Maier H, Muenscher A, Hübner CA and Jentsch TJ: Leukoencephalopathy upon disruption of the chloride channel ClC-2. J Neurosci. 27:6581–6589. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ge YX, Liu Y, Tang HY, Liu XG and Wang X: ClC-2 contributes to tonic inhibition mediated by α5 subunit-containing GABA(A) receptor in experimental temporal lobe epilepsy. Neuroscience. 186:120–127. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pan F, Guo R, Cheng W, Chai L, Wang W, Cao C and Li S: High glucose inhibits ClC-2 chloride channels and attenuates cell migration of rat keratinocytes. Drug Des Devel Ther. 9:4779–4791. 2015.PubMed/NCBI | |
Borchers AT, Naguwa SM, Keen CL and Gershwin ME: Immunopathogenesis of Sjögren's syndrome. Clin Rev Allergy Immunol. 25:89–104. 2003. View Article : Google Scholar : PubMed/NCBI | |
Nocturne G and Mariette X: Advances in understanding the pathogenesis of primary Sjogren's syndrome. Nat Rev Rheumatol. 9:544–556. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guo Z, Song D, Azzarolo AM, Schechter JE, Warren DW, Wood RL, Mircheff AK and Kaslow HR: Autologous lacrimal lymphoid mixed-cell reactions induce dacryoadenitis in rabbits. Exp Eye Res. 71:23–31. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zhu Z, Stevenson D, Schechter JE, Mircheff AK, Atkinson R and Trousdale MD: Lacrimal histopathology and ocular surface disease in a rabbit model of autoimmune dacryoadenitis. Cornea. 22:25–32. 2003. View Article : Google Scholar : PubMed/NCBI | |
Thomas PB, Zhu Z, Selvam S, Samant DM, Stevenson D, Mircheff AK, Schechter JE, Song SW and Trousdale MD: Autoimmune dacryoadenitis and keratoconjunctivitis induced in rabbits by subcutaneous injection of autologous lymphocytes activated ex vivo against lacrimal antigens. J Autoimmun. 31:116–122. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chan HC, Ruan YC, He Q, Chen MH, Chen H, Xu WM, Chen WY, Xie C, Zhang XH and Zhou Z: The cystic fibrosis transmembrane conductance regulator in reproductive health and disease. J Physiol. 587:2187–2195. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yeung CH, Barfield JP and Cooper TG: Chloride channels in physiological volume regulation of human spermatozoa. Biol Reprod. 73:1057–1063. 2005. View Article : Google Scholar : PubMed/NCBI | |
Anderson MP, Sheppard DN, Berger HA and Welsh M: Chloride channels in the apical membrane of normal and cystic fibrosis airway and intestinal epithelia. Am J Physiol. 263:L1–L14. 1992.PubMed/NCBI | |
O'Sullivan BP and Freedman SD: Cystic fibrosis. Lancet. 373:1891–1904. 2009. View Article : Google Scholar : PubMed/NCBI | |
Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, et al: Identification of the cystic fibrosis gene: Cloning and characterization of complementary. Science. 245:1066–1073. 1989. View Article : Google Scholar : PubMed/NCBI | |
Van der Knaap MS, Barth PG, Stroink H, van Nieuwenhuizen O, Arts WF, Hoogenraa F and Valk J: Leukoencephalopathy with swelling and a discrepantly mild clinical course in eight children. Ann Neurol. 37:324–334. 1995. View Article : Google Scholar : PubMed/NCBI | |
Hauser WA, Annegers JF and Rocca WA: Descriptive epidemiology of epilepsy: Contributions of population-based studies from Rochester, Minnesota. Mayo Clin Proc. 71:576–586. 1996. View Article : Google Scholar : PubMed/NCBI | |
Ji ZY: Research progress of chloride channel ClC- 2. J Kunm Med Univ. 30:68–72. 2009. |