1
|
Kito S, Iritani A and Bavister BD: Effects
of volume, culture media and type of culture dish on in vitro
development of hamster 1-cell embryos. Theriogenology. 47:541–548.
1997. View Article : Google Scholar : PubMed/NCBI
|
2
|
Dai SJ, Xu CL, Wang J, Sun YP and Chian
RC: Effect of culture medium volume and embryo density on early
mouse embryonic development: Tracking the development of the
individual embryo. J Assist Reprod Genet. 29:617–623. 2012.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Gstraunthaler G, Seppi T and Pfaller W:
Impact of culture conditions, culture media volumes, and glucose
content on metabolic properties of renal epithelial cell cultures.
Are renal cells in tissue culture hypoxic? Cell Physiol Biochem.
9:150–172. 1999. View Article : Google Scholar : PubMed/NCBI
|
4
|
Heywood HK, Sembi PK, Lee DA and Bader DL:
Cellular utilization determines viability and matrix distribution
profiles in chondrocyte-seeded alginate constructs. Tissue Eng.
10:1467–1479. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
Heywood HK, Bader DL and Lee DA: Glucose
concentration and medium volume influence cell viability and
glycosaminoglycan synthesis in chondrocyte-seeded alginate
constructs. Tissue Eng. 12:3487–3496. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Oze H, Hirao M, Ebina K, Shi K, Kawato Y,
Kaneshiro S, Yoshikawa H and Hashimoto J: Impact of medium volume
and oxygen concentration in the incubator on pericellular oxygen
concentration and differentiation of murine chondrogenic cell
culture. In Vitro Cell Dev Biol Anim. 48:123–130. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Pettersen EO, Larsen LH, Ramsing NB and
Ebbesen P: Pericellular oxygen depletion during ordinary tissue
culturing, measured with oxygen microsensors. Cell Prolif.
38:257–267. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Owen TA, Aronow M, Shalhoub V, Barone LM,
Wilming L, Tassinri MS, Kennedy MB, Pockwines S, Lian JB and Stein
GS: Progressive development of the rat osteoblast phenotype in
vitro: Reciprocal relationship in expression of genes associated
with osteoblast proliferation and differentiation during formation
of the bone extracellular matrix. J Cell Physiol. 143:420–430.
1990. View Article : Google Scholar : PubMed/NCBI
|
9
|
Quarles LD, Yohay DA, Lever LW, Caton R
and Wenstrup RJ: Distinct proliferative and differentiated stages
of murine MC3T3-E1 cells in culture: An in vitro model of
osteoblast development. J Bone Miner Res. 7:683–692. 1992.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Deyama Y, Takeyama S, Koshikawa M, Shirai
Y, Yoshimura Y, Nishikata M, Suzuki K and Matsumoto A: Osteoblast
maturation suppressed osteoclastogenesis in coculture with bone
marrow cells. Biochem Biophys Res Commun. 274:249–254. 2000.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Anderson HC: Molecular biology of matrix
vesicles. Clin Orthop Relat Res. 266–280. 1995.PubMed/NCBI
|
12
|
Fleish H and Neuman WF: Mechanism of
calcification. Role of collagen, polyphosphatases, and phosphate.
Am J Physiol. 200:1296–1300. 1961.PubMed/NCBI
|
13
|
Deyama A, Deyama Y, Matsumoto A, Yoshimura
Y, Nishikata M, Suzuki K and Totsuka Y: A low calcium environment
enhances AP-1 transcription factor-mediated gene expression in the
development of osteoblastic MC3T3-E1 Cells. Miner Electrolyte
Metab. 25:147–160. 1999. View Article : Google Scholar : PubMed/NCBI
|
14
|
Suda T, Takahashi N and Martin TJ:
Modulation of osteoclast differentiation. Endocr Rev. 13:66–80.
1992. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yoshida H, Hayashi S, Kunisada T, Ogawa M,
Nishikawa S, Okamura H, Sudo T, Shultz LD and Nishikawa SI: The
murine mutation osteopetrosis is in the coding region of the
macrophage colony stimulating factor gene. Nature. 345:442–444.
1990. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Lacey DL, Timms E, Tan HL, Kelley MJ,
Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S,
et al: Osteoprotegerin ligand is a cytokine that regulates
osteoclast differentiation and activation. Cell. 93:165–176. 1998.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Udagawa N, Takahashi N, Yasuda H, Mizuno
A, Itoh K, Ueno Y, Shinki T, Gillespie MT, Martin TJ, Higashio K
and Suda T: Osteoprotegerin produced by osteoblasts is an important
regulator in osteoclast development and function. Endocrinology.
141:3478–3484. 2000. View Article : Google Scholar : PubMed/NCBI
|
18
|
Boyle WJ, Simonet WS and Lacey DL:
Osteoclast differentiation and activation. Nature. 423:337–342.
2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mochizuki A, Takami M, Kawawa T, Suzumoto
R, Sasaki T, Shiba A, Tsukasaki H, Zhao B, Yasuhara R, Suzawa T, et
al: Identification and characterization of the precursors committed
to osteoclasts induced by TNF-related activation-induced
cytokine/receptor activator of NF-kappa B ligand. J Immunol.
177:4360–4368. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Takahashi N, Akatsu T, Udagawa N, Sasaki
T, Yamaguchi A, Moseley JM, Martin TJ and Suda T: Osteoblastic
cells are involved in osteoclast formation. Endocrinology.
123:2600–2602. 1988. View Article : Google Scholar : PubMed/NCBI
|
21
|
Suda T, Udagawa N, Nakamura I, Miyaura C
and Takahashi N: Modulation of osteoclast differentiation by local
factors. Bone. 17:(2 Suppl). 87S–91S. 1995. View Article : Google Scholar : PubMed/NCBI
|
22
|
Suzuki K, Yoshimura Y, Hisada Y and
Matsumoto A: Sensitivity of intestinal alkaline phosphatase to
L-homoarginine and its regulation by subunit-subunit interaction.
Jpn J Pharmacol. 64:97–102. 1994. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bessey OA, Lowry OH and Brock MJ: A method
for the rapid determination of alkaline phosphatase with five cubic
millimeters of serum. J Biol Chem. 164:321–329. 1946.PubMed/NCBI
|
24
|
Hayakawa T, Yoshimura Y, Kikuiri T,
Matsuno M, Hasegawa T, Fukushima K, Shibata K, Deyama Y, Suzuki K
and Iida J: Optimal compressive force accelerates
osteoclastogenesis in RAW264.7 cells. Mol Med Rep. 12:5879–5885.
2015.PubMed/NCBI
|
25
|
Nakai T, Yoshimura Y, Deyama Y, Suzuki K
and Iida J: Mechanical stress up-regulates RANKL expression via the
VEGF autocrine pathway in osteoblastic Mc3T3-E1 cells. Mol Med Rep.
2:229–234. 2009.PubMed/NCBI
|
26
|
Simonet WS, Lacey DL, Dunstan CR, Kelley
M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, et
al: Osteoprotegerin: A novel secreted protein involved in the
regulation of bone density. Cell. 89:309–319. 1997. View Article : Google Scholar : PubMed/NCBI
|
27
|
Suzuki N, Yoshimura Y, Deyama Y, Suzuki K
and Kitagawa Y: Mechanical stress directly suppresses osteoclast
differentiation in RAW264.7 cells. Int J Mol Med. 21:291–296.
2008.PubMed/NCBI
|
28
|
Nakao K, Goto T, Gunjigake KK, Konoo T,
Kobayashi S and Yamaguchi K: Intermittent force induces high RANKL
expression in human periodontal ligament cells. J Dent Res.
86:623–628. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Williams JP, Blair HC, McDonald JM,
McKenna MA, Jordan SE, Williford J and Hardy RW: Regulation of
osteoclastic bone resorption by glucose. Biochem Biophys Res
Commun. 235:646–651. 1997. View Article : Google Scholar : PubMed/NCBI
|
30
|
Miyauchi Y, Sato Y, Kobayashi T, Yoshida
S, Mori T, Kanagawa H, Katsuyama E, Fujie A, Hao W, Miyamoto K, et
al: HIF1α is required for osteoclast activation by estrogen
deficiency in postmenopausal osteoporosis. Proc Natl Acad Sci USA.
110:16568–16573. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Takayanagi H: Osteoimmunology: Shared
mechanisms and crosstalk between the immune and bone systems. Nat
Rev Immunol. 7:292–304. 2007. View
Article : Google Scholar : PubMed/NCBI
|