1
|
Tangedal S, Aanerud M, Persson LJ,
Brokstad KA, Bakke PS and Eagan TM: Comparison of inflammatory
markers in induced and spontaneous sputum in a cohort of COPD
patients. Respir Res. 15:1382014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Niewoehner DE: Clinical practice.
Outpatient management of severe COPD. N Engl J Med. 362:1407–1416.
2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Vogelmeier C, Hederer B, Glaab T, Schmidt
H, Rutten-van Mölken MP, Beeh KM, Rabe KF and Fabbri LM: POET-COPD
Investigators: Tiotropium versus salmeterol for the prevention of
exacerbations of COPD. N Engl J Med. 364:1093–1103. 2011.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Kang MJ, Yoon CM, Kim BH, Lee CM, Zhou Y,
Sauler M, Homer R, Dhamija A, Boffa D, West AP, et al: Suppression
of NLRX1 in chronic obstructive pulmonary disease. J Clin Invest.
125:2458–2462. 2015. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Brusasco V, Crimi E and Pellegrino R:
Airway inflammation in COPD: Friend or foe? Am J Respir Crit Care
Med. 176:425–426. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ogawa E, Elliott WM, Hughes F, Eichholtz
TJ, Hogg JC and Hayashi S: Latent adenoviral infection induces
production of growth factors relevant to airway remodeling in COPD.
Am J Physiol Lung Cell Mol Physiol. 286:L189–L197. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Michaeloudes C, Wiegman C, Kirkham P,
Chung KF and Adcock I: Mitochondrial reactive oxygen species (ROS)
mediate proliferation and cytokine release in airway smooth muscle
cells of patients with COPD. European Respir J. 44:P38452014.
|
8
|
Chung KF: The role of airway smooth muscle
in the pathogenesis of airway wall remodeling in chronic
obstructive pulmonary disease. Proc Am Thorac Soc. 2:347–354,
371–372. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Viby NE, Isidor MS, Buggeskov KB, Poulsen
SS, Hansen JB and Kissow H: Glucagon-like peptide-1 (GLP-1) reduces
mortality and improves lung function in a model of experimental
obstructive lung disease in female mice. Endocrinology.
154:4503–4511. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Drucker DJ: Glucagon-like peptides.
Diabetes. 47:159–169. 1998. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hou Y, Ernst SA, Heidenreich K and
Williams JA: Glucagon-like peptide-1 receptor is present in
pancreatic acinar cells and regulates amylase secretion through
cyclic AMP. Am J Physiol Gastrointest Liver Physiol. 310:G26–G33.
2016.PubMed/NCBI
|
12
|
Tang-Christensen M, Vrang N and Larsen PJ:
Glucagon-like peptide 1(7–36) amide's central inhibition of feeding
and peripheral inhibition of drinking are abolished by neonatal
monosodium glutamate treatment. Diabetes. 47:530–537. 1998.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Nauck MA, Niedereichholz U, Ettler R,
Holst JJ, Orskov C, Ritzel R and Schmiegel WH: Glucagon-like
peptide 1 inhibition of gastric emptying outweighs its
insulinotropic effects in healthy humans. Am J Physiol.
273:E981–E988. 1997.PubMed/NCBI
|
14
|
Noyan-Ashraf MH, Momen MA, Ban K, Sadi AM,
Zhou YQ, Riazi AM, Baggio LL, Henkelman RM, Husain M and Drucker
DJ: GLP-1R agonist liraglutide activates cytoprotective pathways
and improves outcomes after experimental myocardial infarction in
mice. Diabetes. 58:975–983. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS,
Drucker DJ and Husain M: Cardioprotective and vasodilatory actions
of glucagon-like peptide 1 receptor are mediated through both
glucagon-like peptide 1 receptor-dependent and -independent
pathways. Circulation. 117:2340–2350. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Dillon JS, Tanizawa Y, Wheeler MB, Leng
XH, Ligon BB, Rabin DU, Yoo-Warren H, Permutt MA and Boyd AE III:
Cloning and functional expression of the human glucagon-like
peptide-1 (GLP-1) receptor. Endocrinology. 133:1907–1910. 1993.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Bullock BP, Heller RS and Habener JF:
Tissue distribution of messenger ribonucleic acid encoding the rat
glucagon-like peptide-1 receptor. Endocrinology. 137:2968–2978.
1996. View Article : Google Scholar : PubMed/NCBI
|
18
|
Campos RV, Lee YC and Drucker DJ:
Divergent tissue-specific and developmental expression of receptors
for glucagon and glucagon-like peptide-1 in the mouse.
Endocrinology. 134:2156–2164. 1994. View Article : Google Scholar : PubMed/NCBI
|
19
|
Arakawa M, Mita T, Azuma K, Ebato C, Goto
H, Nomiyama T, Fujitani Y, Hirose T, Kawamori R and Watada H:
Inhibition of monocyte adhesion to endothelial cells and
attenuation of atherosclerotic lesion by a glucagon-like peptide-1
receptor agonist, exendin-4. Diabetes. 59:1030–1037. 2010.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Iwai T, Ito S, Tanimitsu K, Udagawa S and
Oka J: Glucagon-like peptide-1 inhibits LPS-induced IL-1beta
production in cultured rat astrocytes. Neurosci Res. 55:352–360.
2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ku HC, Chen WP and Su MJ: GLP-1 signaling
preserves cardiac function in endotoxemic Fischer 344 and
DPP4-deficient rats. Naunyn-Schmiedeberg's Arch Pharmacol.
382:463–474. 2010. View Article : Google Scholar
|
22
|
Hu YW, Yang JY, Ma X, Chen ZP, Hu YR, Zhao
JY, Li SF, Qiu YR, Lu JB, Wang YC, et al: A lincRNA-
DYNLRB2-2/GPR119/GLP-1R/ABCA1-dependent signal transduction pathway
is essential for the regulation of cholesterol homeostasis. J Lipid
Res. 55:681–697. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Langmann T, Klucken J, Reil M, Liebisch G,
Luciani MF, Chimini G, Kaminski WE and Schmitz G: Molecular cloning
of the human ATP-binding cassette transporter 1 (hABC1): Evidence
for sterol-dependent regulation in macrophages. Biochem Biophys Res
Commun. 257:29–33. 1999. View Article : Google Scholar : PubMed/NCBI
|
24
|
Bortnick AE, Rothblat GH, Stoudt G, Hoppe
KL, Royer LJ, McNeish J and Francone OL: The correlation of
ATP-binding cassette 1 mRNA levels with cholesterol efflux from
various cell lines. J Biol Chem. 275:28634–28640. 2000. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bates SR, Tao JQ, Collins HL, Francone OL
and Rothblat GH: Pulmonary abnormalities due to ABCA1 deficiency in
mice. Am J Physiol Lung Cell Mol Physiol. 289:L980–L989. 2005.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Dai C, Boris V, Yao X, Meyer K, Karen K,
Nugent GJ, Qu X, Yu ZX, Remaley A and Levine SJ: Expression Of
Human Abca1 In Mouse Vascular Endothelial Cells Attenuates
Ovalbumin-Induced Neutrophilic Airway Inflammation. Am J Respir
Crit Care Med. 185:A56372012.
|
27
|
Dai C, Yao X, Vaisman B, Brenner T, Meyer
KS, Gao M, Keeran KJ, Nugent GZ, Qu X, Yu ZX, et al: ATP-binding
cassette transporter 1 attenuates ovalbumin-induced neutrophilic
airway inflammation. Am J Respir Cell Mol Biol. 51:626–636. 2014.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Michaeloudes C, Sukkar MB, Khorasani NM,
Bhavsar PK and Chung KF: TGF-β regulates Nox4, MnSOD, and catalase
expression, and IL-6 release in airway smooth muscle cells. Am J
Physiol Lung Cell Mol Physiol. 300:L295–L304. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sturrock A, Huecksteadt TP, Norman K,
Sanders K, Murphy TM, Chitano P, Wilson K, Hoidal JR and Kennedy
TP: Nox4 mediates TGF-beta1-induced retinoblastoma protein
phosphorylation, proliferation, and hypertrophy in human airway
smooth muscle cells. Am J Physiol Lung Cell Mol Physiol.
292:L1543–L1555. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lin SS, Lai KC, Hsu SC, Yang JS, Kuo CL,
Lin JP, Ma YS, Wu CC and Chung JG: Curcumin inhibits the migration
and invasion of human A549 lung cancer cells through the inhibition
of matrix metalloproteinase-2 and-9 and Vascular Endothelial Growth
Factor (VEGF). Cancer Lett. 285:127–133. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hsu SC, Kuo CL, Lin JP, Lee JH, Lin CC, Su
CC, Yang MD and Chung JG: Crude extracts of Euchresta formosana
radix inhibit invasion and migration of human hepatocellular
carcinoma cells. Anticancer Res. 27:2377–2384. 2007.PubMed/NCBI
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Liu Q, Anderson C, Broyde A, Polizzi C,
Fernandez R, Baron A and Parkes DG: Glucagon-like peptide-1 and the
exenatide analogue AC3174 improve cardiac function, cardiac
remodeling, and survival in rats with chronic heart failure.
Cardiovasc Diabetol. 9:762010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lazaar AL and Panettieri RA Jr: Airway
smooth muscle as an immunomodulatory cell: A new target for
pharmacotherapy? Curr Opin Pharmacol. 1:259–264. 2001. View Article : Google Scholar : PubMed/NCBI
|
35
|
Delvecchio CJ, Bilan P, Nair P and Capone
JP: LXR-induced reverse cholesterol transport in human airway
smooth muscle is mediated exclusively by ABCA1. Am J Physiol Lung
Cell Mol Physiol. 295:L949–L957. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Mostafa AM, Hamdy NM, El-Mesallamy HO and
Abdel-Rahman SZ: Glucagon-like peptide 1 (GLP-1)-based therapy
upregulate LXR-ABCA1/ABCG1 cascade in adipocytes. Biochem Biophys
Res Commun. 468:900–905. 2015. View Article : Google Scholar : PubMed/NCBI
|