Transcriptional co-regulator RIP140: An important mediator of the inflammatory response and its associated diseases (Review)
- Authors:
- Zhu‑Jun Yi
- Jian‑Ping Gong
- Wei Zhang
-
Affiliations: Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, Sichuan 400010, P.R. China, Department of Hepatobiliary Surgery, The People's Hospital of Jianyang, Jianyang, Sichuan 641400, P.R. China - Published online on: June 2, 2017 https://doi.org/10.3892/mmr.2017.6683
- Pages: 994-1000
This article is mentioned in:
Abstract
Rosell M, Jones MC and Parker MG: Role of nuclear receptor corepressor RIP140 in metabolic syndrome. Biochim Biophys Acta. 1812:919–928. 2011. View Article : Google Scholar : PubMed/NCBI | |
White R, Morganstein D, Christian M, Seth A, Herzog B and Parker MG: Role of RIP140 in metabolic tissues: Connections to disease. FEBS Lett. 582:39–45. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fritah A, Christian M and Parker MG: The metabolic coregulator RIP140: An update. Am J Physiol Endocrinol Metab. 299:E335–E340. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chung HT: RIP140, a Janus metabolic switch involved in defense functions. Cell Mol Immunol. 10:7–9. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ho PC, Chuang YS, Hung CH and Wei LN: Cytoplasmic receptor-interacting protein 140 (RIP140) interacts with perilipin to regulate lipolysis. Cell Signal. 23:1396–1403. 2011. View Article : Google Scholar : PubMed/NCBI | |
Powelka AM, Seth A, Virbasius JV, Kiskinis E, Nicoloro SM, Guilherme A, Tang X, Straubhaar J, Cherniack AD, Parker MG and Czech MP: Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes. J Clin Invest. 116:125–136. 2006. View Article : Google Scholar : PubMed/NCBI | |
Docquier A, Harmand PO, Fritsch S, Chanrion M, Darbon JM and Cavaillès V: The transcriptional coregulator RIP140 represses E2F1 activity and discriminates breast cancer subtypes. Clin Cancer Res. 16:2959–2970. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lapierre M, Bonnet S, Bascoul-Mollevi C, Ait-Arsa I, Jalaguier S, Del Rio M, Plateroti M, Roepman P, Ychou M, Pannequin J, et al: RIP140 increases APC expression and controls intestinal homeostasis and tumorigenesis. J Clin Invest. 124:1899–1913. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Wang Y, Dai Y, Wang J, Suo T, Pan H and Liu H, Shen S and Liu H: Downregulation of RIP140 in hepatocellular carcinoma promoted the growth and migration of the cancer cells. Tumour Biol. 36:2077–2085. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zschiedrich I, Hardeland U, Krones-Herzig A, Diaz M Berriel, Vegiopoulos A, Müggenburg J, Sombroek D, Hofmann TG, Zawatzky R, Yu X, et al: Coactivator function of RIP140 for NFkappaB/RelA-dependent cytokine gene expression. Blood. 112:264–276. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ho PC, Tsui YC, Feng X, Greaves DR and Wei LN: NF-kB-mediated degradation of the co-activator RIP140 regulates inflammatory response and contributes to endotoxin tolerance. Nat Immunol. 13:379–386. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kopanakis K, Tzepi IM, Pistiki A, Carrer DP, Netea MG, Georgitsi M, Lymperi M, Droggiti DI, Liakakos T, Machairas A and Giamarellos-Bourboulis EJ: Pre-treatment with low-dose endotoxin prolongs survival from experimental lethal endotoxic shock: Benefit for lethal peritonitis by Escherichia coli. Cytokine. 62:382–388. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guilherme A, Virbasius JV, Puri V and Czech MP: Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 9:367–377. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Huang L and Xing D: Photoactivation of Dok1/ERK/PPARγ signaling axis inhibits excessive lipolysis in insulin-resistant adipocytes. Cell Signal. 27:1265–1275. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kelley DE, Mokan M, Simoneau JA and Mandarino LJ: Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J Clin Invest. 92:91–98. 1993. View Article : Google Scholar : PubMed/NCBI | |
Barma P and Bhattacharya S, Bhattacharya A, Kundu R, Dasgupta S, Biswas A and Bhattacharya S, Roy SS and Bhattacharya S: Lipid induced overexpression of NF-kappaB in skeletal muscle cells is linked to insulin resistance. Biochim Biophys Acta. 1792:190–200. 2009. View Article : Google Scholar : PubMed/NCBI | |
Unger RH: Lipotoxic diseases. Annu Rev Med. 53:319–336. 2002. View Article : Google Scholar : PubMed/NCBI | |
Santomauro AT, Boden G, Silva ME, Rocha DM, Santos RF, Ursich MJ, Strassmann PG and Wajchenberg BL: Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. Diabetes. 48:1836–1841. 1999. View Article : Google Scholar : PubMed/NCBI | |
Savage DB, Petersen KF and Shulman GI: Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev. 87:507–520. 2007. View Article : Google Scholar : PubMed/NCBI | |
Christianson JL, Nicoloro S, Straubhaar J and Czech MP: Stearoyl-CoA desaturase 2 is required for peroxisome proliferator-activated receptor gamma expression and adipogenesis in cultured 3T3-L1 cells. J Biol Chem. 283:2906–2916. 2008. View Article : Google Scholar : PubMed/NCBI | |
Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL and Ferrante AW Jr: Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 112:1796–1808. 2003. View Article : Google Scholar : PubMed/NCBI | |
Liu PS, Lin YW, Burton FH and Wei LN: M1-M2 balancing act in white adipose tissue browning-a new role for RIP140. Adipocyte. 4:146–148. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu PS, Lin YW, Lee B, McCrady-Spitzer SK, Levine JA and Wei LN: Reducing RIP140 expression in macrophage alters ATM infiltration, facilitates white adipose tissue browning, and prevents high-fat diet-induced insulin resistance. Diabetes. 63:4021–4031. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, Coupaye M, Pelloux V, Hugol D, Bouillot JL, et al: Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 54:2277–2786. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sartipy P and Loskutoff DJ: Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci USA. 100:7265–7270. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rull A, Camps J, Alonso-Villaverde C and Joven J: Insulin resistance, inflammation, and obesity: Role of monocyte chemoattractant protein-1 (or CCL2) in the regulation of metabolism. Mediators Inflamm. 2010:pii: 3265802010. View Article : Google Scholar | |
Uchida Y, Takeshita K, Yamamoto K, Kikuchi R, Nakayama T, Nomura M, Cheng XW, Egashira K, Matsushita T, Nakamura H and Murohara T: Stress augments insulin resistance and prothrombotic state: Role of visceral adipose-derived monocyte chemoattractant protein-1. Diabetes. 61:1552–1561. 2012. View Article : Google Scholar : PubMed/NCBI | |
Solinas G, Vilcu C, Neels JG, Bandyopadhyay GK, Luo JL, Naugler W, Grivennikov S, Wynshaw-Boris A, Scadeng M, Olefsky JM and Karin M: JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab. 6:386–397. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Guilherme A, Chakladar A, Powelka AM, Konda S, Virbasius JV, Nicoloro SM, Straubhaar J and Czech MP: An RNA interference-based screen identifies MAP4K4/NIK as a negative regulator of PPAR gamma, adipogenesis, and insulin-responsive hexose transport. Proc Natl Acad Sci USA. 103:2087–2092. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shulman GI: Cellular mechanisms of insulin resistance. J Clin Invest. 106:171–176. 2000. View Article : Google Scholar : PubMed/NCBI | |
Tesz GJ, Guilherme A, Guntur KV, Hubbard AC, Tang X, Chawla A and Czech MP: Tumor necrosis factor alpha (TNFalpha) stimulates Map4k4 expression through TNFalpha receptor 1 signaling to c-Jun and activating transcription factor 2. J Biol Chem. 282:19302–19312. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hotamisligil GS, Shargill NS and Spiegelman BM: Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance. Science. 259:87–91. 1993. View Article : Google Scholar : PubMed/NCBI | |
Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Red Eagle A, Vats D, Brombacher F, Ferrante AW and Chawla A: Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature. 447:1116–1120. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi Y, Cavallero S, Patterson M, Shen H, Xu J, Kumar SR and Sucov HM: Adipogenesis and epicardial adipose tissue: A novel fate of the epicardium induced by mesenchymal transformation and PPARγ activation. Proc Natl Acad Sci USA. 112:2070–2075. 2015. View Article : Google Scholar : PubMed/NCBI | |
Imai T, Takakuwa R, Marchand S, Dentz E, Bornert JM, Messaddeq N, Wendling O, Mark M, Desvergne B, Wahli W, et al: Peroxisome proliferator-activated receptor gamma is required in mature white and brown adipocytes for their survival in the mouse. Proc Natl Acad Sci USA. 101:4543–4547. 2004. View Article : Google Scholar : PubMed/NCBI | |
Loft A, Forss I, Siersbæk MS, Schmidt SF, Larsen AS, Madsen JG, Pisani DF, Nielsen R, Aagaard MM, Mathison A, et al: Browning of human adipocytes requires KLF11 and reprogramming of PPARγ superenhancers. Genes Dev. 29:7–22. 2015. View Article : Google Scholar : PubMed/NCBI | |
Siersbæk MS, Loft A, Aagaard MM, Nielsen R, Schmidt SF, Petrovic N, Nedergaard J and Mandrup S: Genome-wide profiling of peroxisome proliferator-activated receptor γ in primary epididymal, inguinal, and brown adipocytes reveals depot-selective binding correlated with gene expression. Mol Cell Biol. 32:3452–3463. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ait-Lounis A and Laraba-Djebari F: TNF-alpha modulates adipose macrophage polarization to M1 phenotype in response to scorpion venom. Inflamm Res. 64:929–936. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bing C: Is interleukin-1β a culprit in macrophage-adipocyte cross talk in obesity? Adipocyte. 4:149–152. 2015. View Article : Google Scholar : PubMed/NCBI | |
McLaren JE, Michael DR, Ashlin TG and Ramji DP: Cytokines, macrophage lipid metabolism and foam cells: Implications for cardiovascular disease therapy. Prog Lipid Res. 50:331–347. 2011. View Article : Google Scholar : PubMed/NCBI | |
Qiu Y, Yanase T, Hu H, Tanaka T, Nishi Y, Liu M, Sueishi K, Sawamura T and Nawata H: Dihydrotestosterone suppresses foam cell formation and attenuates atherosclerosis development. Endocrinology. 151:3307–3316. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yvan-Charvet L, Ranalletta M, Wang N, Han S, Terasaka N, Li R, Welch C and Tall AR: Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest. 117:3900–3908. 2007.PubMed/NCBI | |
Wei H, Tarling EJ, McMillen TS, Tang C and LeBoeuf RC: ABCG1 regulates mouse adipose tissue macrophage cholesterol levels and the ratio of M1 to M2 cells during obesity and caloric restriction. J Lipid Res. 56:2337–2347. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lin YW, Liu PS, Adhikari N, Hall JL and Wei LN: RIP140 contributes to foam cell formation and atherosclerosis by regulating cholesterol homeostasis in macrophages. J Mol Cell Cardiol. 79:287–294. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dawson MI and Xia Z: The retinoid X receptors and their ligands. Biochim Biophys Acta. 1821:21–56. 2012. View Article : Google Scholar : PubMed/NCBI | |
Calkin AC and Tontonoz P: Liver X receptor signaling pathways and atherosclerosis. Arterioscler Thromb Vasc Biol. 30:1513–1518. 2010. View Article : Google Scholar : PubMed/NCBI | |
He Y, Zhang L, Li Z, Gao H, Yue Z, Liu Z, Liu X, Feng X and Liu P: RIP140 triggers foam-cell formation by repressing ABCA1/G1 expression and cholesterol efflux via liver X receptor. FEBS Lett. 589:455–460. 2015. View Article : Google Scholar : PubMed/NCBI | |
Calkin AC and Tontonoz P: Transcriptional integration of metabolism by the nuclear sterol-activated receptors lXR and FXR. Nat Rev Mol Cell Biol. 13:213–224. 2012.PubMed/NCBI | |
Ho PC, Chang KC, Chuang YS and Wei LN: Cholesterol regulation of receptor-interacting protein 140 via microRNA-33 in inflammatory cytokine production. FASEB J. 25:1758–1766. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S, van Gils JM, Rayner AJ, Chang AN, Suarez Y, et al: Antagonism of mir-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest. 121:2921–2931. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dávalos A and Fernández-Hernando C: From evolution to revolution: miRNAs as pharmacological targets for modulating cholesterol efflux and reverse cholesterol transport. Pharmacol Res. 75:60–72. 2013. View Article : Google Scholar : PubMed/NCBI | |
Karasawa T and Takahashi M: RIP140 as a novel therapeutic target in the treatment of atherosclerosis. J Mol Cell Cardiol. 81:136–138. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jawad I, Lukšić I and Rafnsson SB: Assessing available information on the burden of sepsis: Global estimates of incidence, prevalence and mortality. J Glob Health. 2:0104042012. View Article : Google Scholar : PubMed/NCBI | |
Charchaflieh J, Wei J, Labaze G, Hou YJ, Babarsh B, Stutz H, Lee H, Worah S and Zhang M: The role of complement system in septic shock. Clin Dev Immunol. 2012:4073242012. View Article : Google Scholar : PubMed/NCBI | |
Wang X and Quinn PJ: Lipopolysaccharide: Biosynthetic pathway and structure modification. Prog Lipid Res. 49:97–107. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xiong Y, Pennini M, Vogel SN and Medvedev AE: IRAK4 kinase activity is not required for induction of endotoxin tolerance but contributes to TLR2-mediated tolerance. J Leukoc Biol. 94:291–300. 2013. View Article : Google Scholar : PubMed/NCBI | |
Laird MH, Rhee SH, Perkins DJ, Medvedev AE, Piao W, Fenton MJ and Vogel SN: TLR4/MyD88/PI3K interactions regulate TLR4 signaling. J Leukoc Biol. 85:966–977. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nahid MA, Satoh M and Chan EK: MicroRNA in TLR signaling and endotoxin tolerance. Cell Mol Immunol. 8:388–403. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liew FY, Xu D, Brint EK and O'Neill LA: Negative regulation of Toll-like receptor-mediated immune responses. Nat Rev Immunol. 5:446–458. 2005. View Article : Google Scholar : PubMed/NCBI | |
Park SH, Park-Min KH, Chen J, Hu X and Ivashkiv LB: Tumor necrosis factor induces GSK3 kinase-mediated cross-tolerance to endotoxin in macrophages. Nat Immunol. 12:607–615. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen J and Ivashkiv LB: IFN-γ abrogates endotoxin tolerance by facilitating Toll-like receptor induced chromatin remodeling. Proc Natl Acad Sci USA. 107:19438–19443. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Liu Z, Liang S, Luan X, Long F, Chen J, Peng Y, Yan L and Gong J: Role of Kupffer cells in the induction of tolerance of orthotopic liver transplantation in rats. Liver Transpl. 14:823–836. 2008. View Article : Google Scholar : PubMed/NCBI |