1
|
Casimiro MC, Velasco-Velázquez M,
Aguirre-Alvarado C and Pestell RG: Overview of cyclin D1 function
in cancer and the CDK inhibitor landscape: Past and present. Expert
Opin Investig Drugs. 23:295–304. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Choi YJ, Li X, Hydbring P, Sanda T,
Stefano J, Christie AL, Signoretti S, Look AT, Kung AL, von Boehmer
H and Sicinski P: The requirement for cyclin D function in tumor
maintenance. Cancer Cell. 22:438–451. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Beroukhim R, Mermel CH, Porter D, Wei G,
Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J,
Urashima M, et al: The landscape of somatic copy-number alteration
across human cancers. Nature. 463:899–905. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Musgrove EA, Caldon CE, Barraclough J,
Stone A and Sutherland RL: Cyclin D as a therapeutic target in
cancer. Nat Rev Cancer. 11:558–572. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Casimiro MC, Crosariol M, Loro E, Li Z and
Pestell RG: Cyclins and cell cycle control in cancer and disease.
Genes Cancer. 3:649–657. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Roy PG, Pratt N, Purdie CA, Baker L,
Ashfield A, Quinlan P and Thompson AM: High CCND1 amplification
identifies a group of poor prognosis women with estrogen receptor
positive breast cancer. Int J Cancer. 127:355–360. 2010.PubMed/NCBI
|
7
|
Alao JP: The regulation of cyclin D1
degradation: Roles in cancer development and the potential for
therapeutic invention. Mol Cancer. 6:242007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen
NB and Hamid M: scFv antibody: Principles and clinical application.
Clin Dev Immunol. 2012:9802502012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Scott AM, Wolchok JD and Old LJ: Antibody
therapy of cancer. Nat Rev Cancer. 12:278–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Elvin JG, Couston RG and van der Walle CF:
Therapeutic antibodies: Market considerations, disease targets and
bioprocessing. Int J Pharm. 440:83–98. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Holliger P and Hudson PJ: Engineered
antibody fragments and the rise of single domains. Nat Biotechnol.
23:1126–1136. 2005. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Weisser NE and Hall JC: Applications of
single-chain variable fragment antibodies in therapeutics and
diagnostics. Biotechnol Adv. 27:502–520. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wu Y, Zou D, Cao Y, Yao N, Wang J, Wang W,
Jiang H and Li GY: Expression and purification of a human
anti-cyclin D1 single-chain variable fragment antibody AD5 and its
characterization. Int J Mol Med. 32:1451–1457. 2013.PubMed/NCBI
|
14
|
Zhou LH, Zhu X, Cao YH, Wang L, Chen Y, Du
Br and Li GY: Construction of expression vector for anti-cyclin D1
intrabody AD5N and its inhibitory effects on cell proliferation of
breast cancer. Chin J Immunol. 24:703–706. 2008.
|
15
|
Zhou LH, Zhu X, Cao YH, Chen Y, Tian Y,
Wang L and Li GY: Effects of anti-cyclin D1 intrabody AD5N on HeLa
cells of uterine cervix cancer. Chin J Clin Oncol. 35:942–944.
2008.
|
16
|
Avanti C, Oktaviani NA, Hinrichs WL,
Frijlink HW and Mulder FA: Aspartate buffer and divalent metal ions
affect oxytocin in aqueous solution and protect it from
degradation. Int J Pharm. 444:139–145. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tainer JA, Roberts VA and Getzoff ED:
Protein metal-binding sites. Curr Opin Biotechnol. 3:378–387. 1992.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Trisler K, Looger LL, Sharma V, Baker M,
Benson DE, Trauger S, Schultz PG and Smider VV: A metalloantibody
that irreversibly binds a protein antigen. J Biol Chem.
282:26344–26353. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Iverson BL, Iverson SA, Roberts VA,
Getzoff ED, Tainer JA, Benkovic SJ and Lerner RA:
Metalloantibodies. Science. 249:659–662. 1990. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang YP, Shi SY, Huang KL, Chen XQ and
Peng MJ: Effect of Cu2+ and Fe3+ for drug
delivery: Decreased binding affinity of ilaprazole to bovine serum
albumin. J Lumin. 131:1927–1931. 2011. View Article : Google Scholar
|
21
|
Li GY, Zou DS and Zhou LH: Expression and
purification of recombinant human cyclin D1 in E. coli BL21. J
Jilin Univ. 44:839–843. 2006.
|
22
|
Lakowicz JR: Principles of Fluorescence
Spectroscopy. Plenum Press; New York, NY: pp. 260–266. 1983
|
23
|
Bian H, Li M, Yu Q, Chen Z, Tian J and
Liang Q: Study of the interaction of artemisinin with bovine serum
albumin. Int J Biol Macromol. 39:291–297. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu Y, Chen M, Bian G, Liu J and Song L:
Spectroscopic investigation of the interaction of the toxicant,
2-naphthylamine, with bovine serum albumin. J Biochem Mol Toxicol.
25:362–368. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhao X, Sheng F, Zheng J and Liu R:
Composition and stability of anthocyanins from purple solanum
tuberosum and their protective influence on Cr(VI) targeted to
bovine serum albumin. J Agric Food Chem. 59:7902–7909. 2011.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Lu D, Zhao X, Zhao Y, Zhang B, Zhang B,
Geng M and Liu R: Binding of Sudan II and Sudan IV to bovine serum
albumin: Comparison studies. Food Chem Toxicol. 49:3158–3164. 2011.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Miller JN: Recent advances in molecular
luminescence analysis. Proc Anal Div Chem Soc. 16:203–208.
1979.
|
28
|
Ye ZW, Ying Y, Yang XL, Zheng ZQ, Shi JN,
Sun YF and Huang P: A spectroscopic study on the interaction
between the anticancer drug erlotinib and human serum albumin. J
Incl Phenom Macrocycl Chem. 78:405–413. 2014. View Article : Google Scholar
|
29
|
Cao X, Dong D, Liu J, Jia C, Liu W and
Yang W: Studies on the interaction between triphenyltin and bovine
serum albumin by fluorescence and CD spectroscopy. Chemosphere.
26–Jan;2013.[Epub ahead of Print]. View Article : Google Scholar
|
30
|
Fu M, Wang C, Li Z, Sakamaki T and Pestell
RG: Minireview: Cyclin D1: Normal and abnormal functions.
Endocrinology. 145:5439–5447. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Neumeister P, Pixley FJ, Xiong Y, Xie H,
Wu K, Ashton A, Cammer M, Chan A, Symons M, Stanley ER and Pestell
RG: Cyclin D1 governs adhesion and motility of macrophages. Mol
Biol Cell. 14:2005–2015. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Malumbres M: Cell cycle-based therapies
move forward. Cancer Cell. 22:419–420. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ding Z, Wu CJ, Chu GC, Xiao Y, Ho D, Zhang
J, Perry SR, Labrot ES, Wu X, Lis R, et al: SMAD4-dependent barrier
constrains prostate cancer growth and metastatic progression.
Nature. 470:269–273. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Dai H, Gao H, Zhao X, Dai L, Zhang X, Xiao
N, Zhao R and Hemmingsen SM: Construction and characterization of a
novel recombinant single-chain variable fragment antibody against
white spot syndrome virus from shrimp. J Immunol Methods.
279:267–275. 2003. View Article : Google Scholar : PubMed/NCBI
|
35
|
Jäger M and Plückthun A: Domain
interactions in antibody Fv and scFv fragments: Effects on
unfolding kinetics and equilibria. FEBS Lett. 462:307–312. 1999.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Paoletti F, Malerba F, Konarev PV,
Visintin M, Scardigli R, Fasulo L, Lamba D, Svergun DI and Cattaneo
A: Direct intracellular selection and biochemical characterization
of a recombinant anti-proNGF single chain antibody fragment. Arch
Biochem Biophys. 522:26–36. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Adams GP and Schier R: Generating improved
single-chain Fv molecules for tumor targeting. J Immunol Methods.
231:249–260. 1999. View Article : Google Scholar : PubMed/NCBI
|
38
|
Adams GP, Schier R, Marshall K, Wolf EJ,
McCall AM, Marks JD and Weiner LM: Increased affinity leads to
improved selective tumor delivery of single-chain Fv antibodies.
Cancer Res. 58:485–490. 1998.PubMed/NCBI
|
39
|
Adams GP, Schier R, McCall AM, Simmons H,
Horak E, Marks JD and Weiner LM: What are the determinants of
antibody-based targeting? Proc Amer Assoc Cancer Res.
39:4361998.
|
40
|
Sela-Culang I, Kunik V and Ofran Y: The
structural basis of antibody-antigen recognition. Front Immunol.
4:3022013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Goldsby RA, Kindt TJ, Kuby J and Osborne
BA: Immunology. 5th. W. H. Freeman and Company Publishers; New
York: 2003
|
42
|
Burkovitz A, Leiderman O, Sela-Culang I,
Byk G and Ofran Y: Computational identification of antigen-binding
antibody fragments. J Immunol. 190:2327–2334. 2013. View Article : Google Scholar : PubMed/NCBI
|