1
|
Kiernan MC, Vucic S, Cheah BC, Turner MR,
Eisen A, Hardiman O, Burrell JR and Zoing MC: Amyotrophic lateral
sclerosis. Lancet. 377:942–955. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Rosen DR, Siddique T, Patterson D,
Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP,
Deng HX, et al: Mutations in Cu/Zn superoxide dismutase gene are
associated with familial amyotrophic lateral sclerosis. Nature.
362:59–62. 1993. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Mancuso R and Navarro X: Amyotrophic
lateral sclerosis: Current perspectives from basic research to the
clinic. Prog Neurobiol. 133:1–26. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Garbuzova-Davis S, Hernandez-Ontiveros DG,
Rodrigues MC, Haller E, Frisina-Deyo A, Mirtyl S, Sallot S, Saporta
S, Borlongan CV and Sanberg PR: Impaired blood-brain/spinal cord
barrier in ALS patients. Brain Res. 1469:114–128. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Winkler EA, Sengillo JD, Sullivan JS,
Henkel JS, Appel SH and Zlokovic BV: Blood-spinal cord barrier
breakdown and pericyte reductions in amyotrophic lateral sclerosis.
Acta Neuropathol. 125:111–120. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yamadera M, Fujimura H, Inoue K, Toyooka
K, Mori C, Hirano H and Sakoda S: Microvascular disturbance with
decreased pericyte coverage is prominent in the ventral horn of
patients with amyotrophic lateral sclerosis. Amyotroph Lateral
Scler Frontotemporal Degener. 16:393–401. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sasaki S: Alterations of the blood-spinal
cord barrier in sporadic amyotrophic lateral sclerosis.
Neuropathology. 35:518–528. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Garbuzova-Davis S, Haller E, Saporta S,
Kolomey I, Nicosia SV and Sanberg PR: Ultrastructure of blood-brain
barrier and blood-spinal cord barrier in SOD1 mice modeling ALS.
Brain Res. 1157:126–137. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Garbuzova-Davis S, Saporta S, Haller E,
Kolomey I, Bennett SP, Potter H and Sanberg PR: Evidence of
compromised blood-spinal cord barrier in early and late symptomatic
SOD1 mice modeling ALS. PLoS One. 2:e12052007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Winkler EA, Sengillo JD, Sagare AP, Zhao
Z, Ma Q, Zuniga E, Wang Y, Zhong Z, Sullivan JS, Griffin JH, et al:
Blood-spinal cord barrier disruption contributes to early
motor-neuron degeneration in ALS-model mice. Proc Natl Acad Sci
USA. 111:E1035–E1042. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Blackburn D, Sargsyan S, Monk PN and Shaw
PJ: Astrocyte function and role in motor neuron disease: A future
therapeutic target? Glia. 57:1251–1264. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Nicchia GP, Nico B, Camassa LM, Mola MG,
Loh N, Dermietzel R, Spray DC, Svelto M and Frigeri A: The role of
aquaporin-4 in the blood-brain barrier development and integrity:
Studies in animal and cell culture models. Neuroscience.
129:935–945. 2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Tomás-Camardiel M, Venero JL, Herrera AJ,
de Pablos RM, Pintor-Toro JA, Machado A and Cano J: Blood-brain
barrier disruption highly induces aquaporin-4 mRNA and protein in
perivascular and parenchymal astrocytes: Protective effect by
estradiol treatment in ovariectomized animals. J Neurosci Res.
80:235–246. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Li S, Hu X, Zhang M, Zhou F, Lin N, Xia Q,
Zhou Y, Qi W, Zong Y, Yang H and Wang T: Remote ischemic
post-conditioning improves neurological function by AQP4
down-regulation in astrocytes. Behav Brain Res. 289:1–8. 2015.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Alvestad S, Hammer J, Hoddevik EH, Skare
Ø, Sonnewald U, Amiry-Moghaddam M and Ottersen OP: Mislocalization
of AQP4 precedes chronic seizures in the kainate model of temporal
lobe epilepsy. Epilepsy Res. 105:30–41. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM,
Soltero M, Yang L, Singh I, Deane R and Nedergaard M: Impairment of
glymphatic pathway function promotes tau pathology after traumatic
brain injury. J Neurosci. 34:16180–16193. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Xu Z, Xiao N, Chen Y, Huang H, Marshall C,
Gao J, Cai Z, Wu T, Hu G and Xiao M: Deletion of aquaporin-4 in
APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits.
Mol Neurodegener. 10:582015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Nesic O, Lee J, Ye Z, Unabia GC, Rafati D,
Hulsebosch CE and Perez-Polo JR: Acute and chronic changes in
aquaporin 4 expression after spinal cord injury. Neuroscience.
143:779–792. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Nicaise C, Soyfoo MS, Authelet M, de
Decker R, Bataveljic D, Delporte C and Pochet R: Aquaporin-4
overexpression in rat ALS model. Anat Rec (Hoboken). 292:207–213.
2009. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Bataveljic D, Nikolić L, Milosević M,
Todorović N and Andjus PR: Changes in the astrocytic aquaporin-4
and inwardly rectifying potassium channel expression in the brain
of the amyotrophic lateral sclerosis SOD1(G93A) rat model. Glia.
60:1991–2003. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Cui Y, Masaki K, Yamasaki R, Imamura S,
Suzuki SO, Hayashi S, Sato S, Nagara Y, Kawamura MF and Kira J:
Extensive dysregulations of oligodendrocytic and astrocytic
connexins are associated with disease progression in an amyotrophic
lateral sclerosis mouse model. J Neuroinflammation. 11:422014.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Gurney ME, Pu H, Chiu AY, Dal Canto MC,
Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX,
et al: Motor neuron degeneration in mice that express a human Cu,
Zn superoxide dismutase mutation. Science. 264:1772–1775. 1994.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Weydt P, Hong SY, Kliot M and Möller T:
Assessing disease onset and progression in the SOD1 mouse model of
ALS. Neuroreport. 14:1051–1054. 2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Amiry-Moghaddam M, Williamson A, Palomba
M, Eid T, de Lanerolle NC, Nagelhus EA, Adams ME, Froehner SC, Agre
P and Ottersen OP: Delayed K+ clearance associated with aquaporin-4
mislocalization: Phenotypic defects in brains of
alpha-syntrophin-null mice. Proc Natl Acad Sci USA.
100:13615–13620. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Amiry-Moghaddam M, Otsuka T, Hurn PD,
Traystman RJ, Haug FM, Froehner SC, Adams ME, Neely JD, Agre P,
Ottersen OP and Bhardwaj A: An alpha-syntrophin-dependent pool of
AQP4 in astroglial end-feet confers bidirectional water flow
between blood and brain. Proc Natl Acad Sci USA. 100:2106–2111.
2003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Haj-Yasein NN, Jensen V, Østby I, Omholt
SW, Voipio J, Kaila K, Ottersen OP, Hvalby Ø and Nagelhus EA:
Aquaporin-4 regulates extracellular space volume dynamics during
high-frequency synaptic stimulation: A gene deletion study in mouse
hippocampus. Glia. 60:867–874. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Steiner E, Enzmann GU, Lin S, Ghavampour
S, Hannocks MJ, Zuber B, Rüegg MA, Sorokin L and Engelhardt B: Loss
of astrocyte polarization upon transient focal brain ischemia as a
possible mechanism to counteract early edema formation. Glia.
60:1646–1659. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yang J, Lunde LK, Nuntagij P, Oguchi T,
Camassa LM, Nilsson LN, Lannfelt L, Xu Y, Amiry-Moghaddam M,
Ottersen OP and Torp R: Loss of astrocyte polarization in the
tg-ArcSwe mouse model of Alzheimer's disease. J Alzheimers Dis.
27:711–722. 2011.PubMed/NCBI
|
29
|
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng
W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, et
al: A paravascular pathway facilitates CSF flow through the brain
parenchyma and the clearance of interstitial solutes, including
amyloid β. Sci Transl Med. 4:147ra1112012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kress BT, Iliff JJ, Xia M, Wang M, Wei HS,
Zeppenfeld D, Xie L, Kang H, Xu Q, Liew JA, et al: Impairment of
paravascular clearance pathways in the aging brain. Ann Neurol.
76:845–861. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ren Z, Iliff JJ, Yang L, Yang J, Chen X,
Chen MJ, Giese RN, Wang B, Shi X and Nedergaard M: ‘Hit & Run’
model of closed-skull traumatic brain injury (TBI) reveals complex
patterns of post-traumatic AQP4 dysregulation. J Cereb Blood Flow
Metab. 33:834–845. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Oklinski MK, Lim JS, Choi HJ, Oklinska P,
Skowronski MT and Kwon TH: Immunolocalization of water channel
proteins AQP1 and AQP4 in rat spinal cord. J Histochem Cytochem.
62:598–611. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Maragakis NJ and Rothstein JD: Glutamate
transporters: Animal models to neurologic disease. Neurobiol Dis.
15:461–473. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Maragakis NJ and Rothstein JD: Mechanisms
of disease: Astrocytes in neurodegenerative disease. Nat Clin Pract
Neurol. 2:679–689. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Rothstein JD, Martin LJ and Kuncl RW:
Decreased glutamate transport by the brain and spinal cord in
amyotrophic lateral sclerosis. N Engl J Med. 326:1464–1468. 1992.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Rothstein JD, van Kammen M, Levey AI,
Martin LJ and Kuncl RW: Selective loss of glial glutamate
transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol.
38:73–84. 1995. View Article : Google Scholar : PubMed/NCBI
|
37
|
Howland DS, Liu J, She Y, Goad B,
Maragakis NJ, Kim B, Erickson J, Kulik J, DeVito L, Psaltis G, et
al: Focal loss of the glutamate transporter EAAT2 in a transgenic
rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis
(ALS). Proc Natl Acad Sci USA. 99:1604–1609. 2002. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zeng XN, Sun XL, Gao L, Fan Y, Ding JH and
Hu G: Aquaporin-4 deficiency down-regulates glutamate uptake and
GLT-1 expression in astrocytes. Mol Cell Neurosci. 34:34–39. 2007.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Gunnarson E, Zelenina M, Axehult G, Song
Y, Bondar A, Krieger P, Brismar H, Zelenin S and Aperia A:
Identification of a molecular target for glutamate regulation of
astrocyte water permeability. Glia. 56:587–596. 2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Hinson SR, Roemer SF, Lucchinetti CF,
Fryer JP, Kryzer TJ, Chamberlain JL, Howe CL, Pittock SJ and Lennon
VA: Aquaporin-4-binding autoantibodies in patients with
neuromyelitis optica impair glutamate transport by down-regulating
EAAT2. J Exp Med. 205:2473–2481. 2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yang J, Li MX, Luo Y, Chen T, Liu J, Fang
P, Jiang B, Hu ZL, Jin Y, Chen JG and Wang F: Chronic ceftriaxone
treatment rescues hippocampal memory deficit in AQP4 knockout mice
via activation of GLT-1. Neuropharmacology. 75:213–222. 2013.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Mogoanta L, Ciurea M, Pirici I,
Margaritescu C, Simionescu C, Ion DA and Pirici D: Different
dynamics of aquaporin 4 and glutamate transporter-1 distribution in
the perineuronal and perivascular compartments during ischemic
stroke. Brain Pathol. 24:475–493. 2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Geis C, Ritter C, Ruschil C, Weishaupt A,
Grünewald B, Stoll G, Holmoy T, Misu T, Fujihara K, Hemmer B, et
al: The intrinsic pathogenic role of autoantibodies to aquaporin 4
mediating spinal cord disease in a rat passive-transfer model. Exp
Neurol. 265:8–21. 2015. View Article : Google Scholar : PubMed/NCBI
|