1
|
Fire A, Xu S, Montgomery MK, Kostas SA,
Driver SE and Mello CC: Potent and specific genetic interference by
double-stranded RNA in Caenorhabditis elegans. Nature. 391:806–811.
1998. View Article : Google Scholar : PubMed/NCBI
|
2
|
Griffiths-Jones S, Saini HK, van Dongen S
and Enright AJ: miRBase: Tools for microRNA genomics. Nucleic Acids
Res. 36:(Database issue). D154–D158. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Baek D, Villén J, Shin C, Camargo FD, Gygi
SP and Bartel DP: The impact of microRNAs on protein output.
Nature. 455:64–71. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Liu Q, Fu H, Sun F, Zhang H, Tie Y, Zhu J,
Xing R, Sun Z and Zheng X: miR-16 family induces cell cycle arrest
by regulating multiple cell cycle genes. Nucleic Acids Res.
36:5391–5404. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Fazekas D, Koltai M, Türei D, Módos D,
Pálfy M, Dúl Z, Zsákai L, Szalay-Bekő M, Lenti K, Farkas IJ, et al:
SignaLink 2-a signaling pathway resource with multi-layered
regulatory networks. BMC Syst Biol. 7:72013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kuzin A, Kundu M, Brody T and Odenwald WF:
The Drosophila nerfin-1 mRNA requires multiple microRNAs to
regulate its spatial and temporal translation dynamics in the
developing nervous system. Dev Biol. 310:35–43. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Stark A, Brennecke J, Bushati N, Russell
RB and Cohen SM: Animal MicroRNAs confer robustness to gene
expression and have a significant impact on 3′UTR evolution. Cell.
123:1133–1146. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bartel DP and Chen CZ: Micromanagers of
gene expression: The potentially widespread influence of metazoan
microRNAs. Nat Rev Genet. 5:396–400. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kloosterman WP and Plasterk RH: The
diverse functions of microRNAs in animal development and disease.
Dev Cell. 11:441–450. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chan JA, Krichevsky AM and Kosik KS:
MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells.
Cancer Res. 65:6029–6033. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lei P, Li Y, Chen X, Yang S and Zhang J:
Microarray based analysis of microRNA expression in rat cerebral
cortex after traumatic brain injury. Brain Res. 1284:191–201. 2009.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Redell JB, Zhao J and Dash PK: Altered
expression of miRNA-21 and its targets in the hippocampus after
traumatic brain injury. J Neurosci Res. 89:212–221. 2011.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Talotta F, Cimmino A, Matarazzo MR,
Casalino L, De Vita G, D'Esposito M, Di Lauro R and Verde P: An
autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1
activity in RAS transformation. Oncogene. 28:73–84. 2009.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Põlajeva J, Swartling FJ, Jiang Y, Singh
U, Pietras K, Uhrbom L, Westermark B and Roswall P: miRNA-21 is
developmentally regulated in mouse brain and is co-expressed with
SOX2 in glioma. BMC Cancer. 12:3782012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Donnelly DJ and Popovich PG: Inflammation
and its role in neuroprotection, axonal regeneration and functional
recovery after spinal cord injury. Exp Neurol. 209:378–388. 2008.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Dou F, Huang L, Yu P, Zhu H, Wang X, Zou
J, Lu P and Xu XM: Temporospatial expression and cellular
localization of oligodendrocyte myelin glycoprotein (OMgp) after
traumatic spinal cord injury in adult rats. J Neurotrauma.
26:2299–2311. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Method. 25:402–408. 2001.
View Article : Google Scholar
|
18
|
Montoya-Gacharna JV, Sutachan JJ, Chan WS,
Sideris A, Blanck TJ and Recio-Pinto E: Preparation of adult spinal
cord motor neuron cultures under serum-free conditions. Methods Mol
Biol. 846:103–116. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Abe M and Bonini NM: MicroRNAs and
neurodegeneration: Role and impact. Trends Cell Biol. 23:30–36.
2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Krichevsky AM: MicroRNA profiling: From
dark matter to white matter, or identifying new players in
neurobiology. ScientificWorldJournal. 7:155–166. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Baptiste DC and Fehlings MG: Update on the
treatment of spinal cord injury. Prog Brain Res. 161:217–233. 2007.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Zai LJ, Yoo S and Wrathall JR: Increased
growth factor expression and cell proliferation after contusive
spinal cord injury. Brain Res. 1052:147–155. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bak M, Silahtaroglu A, Møller M,
Christensen M, Rath MF, Skryabin B, Tommerup N and Kauppinen S:
MicroRNA expression in the adult mouse central nervous system. RNA.
14:432–444. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Medina PP and Slack FJ: Inhibiting
microRNA function in vivo. Nat Methods. 6:37–38. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bhalala OG, Pan L, Sahni V, McGuire TL,
Gruner K, Tourtellotte WG and Kessler JA: microRNA-21 regulates
astrocytic response following spinal cord injury. J Neurosci.
32:17935–17947. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hu JZ, Huang JH, Zeng L, Wang G, Cao M and
Lu HB: Anti-apoptotic effect of microRNA-21 after contusion spinal
cord injury in rats. J Neurotrauma. 30:1349–1360. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Liu NK, Wang XF, Lu QB and Xu XM: Altered
microRNA expression following traumatic spinal cord injury. Exp
Neurol. 219:424–429. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sahni V, Mukhopadhyay A, Tysseling V,
Hebert A, Birch D, Mcguire TL, Stupp SI and Kessler JA: BMPR1a and
BMPR1b signaling exert opposing effects on gliosis after spinal
cord injury. J Neurosci. 30:1839–1855. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Liu G, Detloff MR, Miller KN, Santi L and
Houlé JD: Exercise modulates microRNAs that affect the PTEN/mTOR
pathway in rats after spinal cord injury. Exp Neurol. 233:447–456.
2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Liu XZ, Xu XM, Hu R, Du C, Zhang SX,
McDonald JW, Dong HX, Wu YJ, Fan GS, Jacquin MF, et al: Neuronal
and glial apoptosis after traumatic spinal cord injury. J Neurosci.
17:5395–5406. 1997.PubMed/NCBI
|
31
|
Buller B, Liu X, Wang X, Zhang RL, Zhang
L, Hozeska-Solgot A, Chopp M and Zhang ZG: MicroRNA-21 protects
neurons from ischemic death. FEBS J. 277:4299–4307. 2010.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Strickland IT, Richards L, Holmes FE,
Wynick D, Uney JB and Wong LF: Axotomy-induced miR-21 promotes axon
growth in adult dorsal root ganglion neurons. PLoS One.
6:e234232011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Liu NK, Zhang YP, Titsworth WL, Jiang X,
Han S, Lu PH, Shields CB and Xu XM: A novel role of phospholipase
A2 in mediating spinal cord secondary injury. Ann Neurol.
59:606–619. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Liu G, Keeler BE, Zhukareva V and Houlé
JD: Cycling exercise affects the expression of apoptosis-associated
microRNAs after spinal cord injury in rats. Exp Neurol.
226:200–206. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Frankel LB, Christoffersen NR, Jacobsen A,
Lindow M, Krogh A and Lund AH: Programmed cell death 4 (PDCD4) is
an important functional target of the microRNA miR-21 in breast
cancer cells. J Biol Chem. 283:1026–1033. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Boltshauser E: Spnal cord injury in the
child and young adult. Neuropediatrics. 2015.(Epub ahead of
print).
|