1
|
Ong FS, Das K, Wang J, Vakil H, Kuo JZ,
Blackwell WL, Lim SW, Goodarzi MO, Bernstein KE, Rotter JI and
Grody WW: Personalized medicine and pharmacogenetic biomarkers:
Progress in molecular oncology testing. Expert Rev Mol Diagn.
12:593–602. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Biankin VA, Piantadosi S and Hollingsworth
SJ: Patient-centric trials for therapeutic development in precision
oncology. Nature. 526:361–370. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Le Tourneau C, Kamal M, Tsimberidou AM,
Bedard P, Pierron G, Callens C, Rouleau E, Vincent-Salomon A,
Servant N, Alt M, et al: Treatment algorithms based on tumor
molecular profiling: The essence of precision medicine trials. J
Natl Cancer Inst. 108:djv3622015. View Article : Google Scholar :
|
4
|
Yamaguchi T, Bando H, Mori T, Takahashi K,
Matsumoto H, Yasutome M, Weich H and Toi M: Over expression of
soluble vascular endothelial growth factor receptor 1 in colorectal
cancer: Association with progression and prognosis. Cancer Sci.
98:405–410. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lesslie DP, Summy JM, Parikh NU, Fan F,
Trevino JG, Sawyer TK, Metcalf CA, Shakespeare WC, Hicklin DJ,
Ellis LM and Gallick GE: Vascular endothelial growth factor
receptor-1 mediates migration of human colorectal carcinoma cells
by activation of Src family kinases. Br J Cancer. 94:1710–1717.
2006.PubMed/NCBI
|
6
|
Ziyad S and Iruela-Arispe ML: Molecular
mechanisms of tumor angiogenesis. Genes Cancer. 2:1085–1096. 2011.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Lanara Z, Giannopoulou E, Fullen M,
Kostantinopoulos E, Nebel JC, Kalofonos HP, Patrinos GP and
Pavlidis C: Comparative study and meta-analysis of meta-analysis
studies for the correlation of genomic markers with early cancer
detection. Hum Genomics. 7:142013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Caunt M, Mak J, Liang WC, Stawicki S, Pan
Q, Tong RK, Kowalski J, Ho C, Reslan HB, Ross J, et al: Blocking
neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell.
13:331–342. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Pan Q, Chanthery Y, Liang WC, Stawicki S,
Mak J, Rathore N, Tong RK, Kowalski J, Yee SF, Pacheco G, et al:
Blocking neuropilin-1 function has an additive effect with
anti-VEGF to inhibit tumor growth. Cancer Cell. 11:53–67. 2007.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Rajaganeshan R, Prasad R, Guillou PJ,
Chalmers CR, Scott N, Sarkar R, Poston G and Jayne DG: The
influence of invasive growth pattern and microvessel density on
prognosis in colorectal cancer and colorectal liver metastases. Br
J Cancer. 96:1112–1127. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gee MG, Procopio WN, Makonnen S, Feldman
MD, Yeilding NM and Lee WM: Tumor vessel development and maturation
impose limits on the effectiveness of anti-vascular therapy. Am J
Pathol. 162:183–193. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Xian X, Håkansson J, Ståhlberg A, Lindblom
P, Betsholtz C, Gerhardt H and Semb H: Pericytes limit tumor cell
metastasis. J Clin Invest. 116:642–651. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Romani AA, Borghetti AF, Del Rio P,
Sianesi M and Soliani P: The risk of developing metastatic disease
in colorectal cancer is related to CD105-positive vessel count. J
Surg Oncol. 93:446–455. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Saad RS, Liu YL, Nathan G, Celebrezze J,
Medich D and Silverman JF: Endoglin (CD105) and vascular
endothelial growth factor as prognostic markers in colorectal
cancer. Mod Pathol. 17:197–203. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kölbl AC, Birk AE, Kuhn C, Jeschke U and
Andergassen U: Influence of VEGFR and LHCGR on endometrial
adenocarcinoma. Oncol Lett. 12:2092–2098. 2016.PubMed/NCBI
|
16
|
Trimble CL, Method M, Leitao M, Lu K,
Ioffe O, Hampton M, Higgins R, Zaino R, Mutter GL, et al: Society
of Gynecologic Oncology Clinical Practice Committee: Management of
endometrial precancers. Obstet Gynecol. 120:1160–1175.
2012.PubMed/NCBI
|
17
|
Klemba A, Kukwa W, Bartnik W, Krawczyk T,
Scińska A, Golik P and Czarnecka AM: Molecular biology of
endometrial carcinoma. Postepy Hig Med Dosw (online). 62:420–432.
2008.(In Polish). PubMed/NCBI
|
18
|
Colombo N, Preti E, Landoni F, Carinelli
S, Colombo A, Marini C, Sessa C, et al: ESMO Guidelines Working
Group: Endometrial cancer: ESMO clinical practice guidelines for
diagnosis, treatment and follow-up. Ann Oncol. 22:(Suppl 6).
vi35–vi39. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Murali R, Soslow RA and Weigelt B:
Classification of endometrial carcinoma: More than two types.
Lancet Oncol. 15:e268–e278. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Witek Ł, Janikowski T, Bodzek P, Olejek A
and Mazurek U: Expression of tumor suppressor genes related to the
cell cycle in endometrial cancer patients. Adv Med Sci. 61:317–324.
2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Mi H, Huang X, Muruganujan A, Tang H,
Mills C, Kang D and Thomas PD: PANTHER version 11: Expanded
annotation data from gene ontology and reactome pathways and data
analysis tool enhancements. Nucleic Acids Res. 45:D185–D189. 2017.
View Article : Google Scholar
|
22
|
Bolstad BM, Irizarry RA, Astrand M and
Speed TP: A comparison of normalization methods for high density
oligonucleotide array data based on bias and variance.
Bioinformatics. 19:185–193. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chrominski K and Tkacz M: Comparison of
high-level microarray analysis methods in the context of result
consistency. PLoS One. 10:e01288452015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kim WH, Lee SH, Jung MH, Seo JH, Kim J,
Kim MA and Lee YM: Neuropilin2 expressed in gastric cancer
endothelial cells increases the proliferation and migration of
endothelial cells in response to VEGF. Exp Cell Res. 315:2154–2164.
2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Gluzman-Poltorak Z, Cohen T, Shibuya M and
Neufeld G: Vascular endothelial growth factor receptor-1 and
neuropilin-2 form complexes. J Biol Chem. 276:18688–18694. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Nassiri F, Cusimano MD, Scheithauer BW,
Rotondo F, Fazio A, Yousef GM, Syro LV, Kovacs K and Lloyd RV:
Endoglin (CD105): A review of its role in angiogenesis and tumor
diagnosis, progression and therapy. Anticancer Res. 31:2283–2290.
2011.PubMed/NCBI
|
27
|
Bernabeu C, Lopez-Novoa JM and Quintanilla
M: The emerging role of TGF-beta superfamily coreceptors in cancer.
Biochim Biophys Acta. 1792:954–973. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wong SH, Hamel L, Chevalier S and Philip
A: Endoglin expression on human microvascular endothelial cells
association with betaglycan and formation of higher order complexes
with TGF-beta signaling receptors. Eur J Biochem. 267:5550–5560.
2000. View Article : Google Scholar : PubMed/NCBI
|
29
|
Blobe GC, Schiemann WP and Lodish HF: Role
of transforming growth factor β in human disease. N Engl J Med.
342:1350–1358. 2000. View Article : Google Scholar : PubMed/NCBI
|
30
|
Govinden R and Bhoola KD: Genealogy,
expression, and cellular function of transforming growth
factor-beta. Pharmacol Ther. 98:257–265. 2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhu HJ and Burgess AW: Regulation of
transforming growth factor-beta signaling. Mol Cell Biol Res
Commun. 4:321–330. 2001. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hata A, Shi Y and Massagué J: TGF-beta
signaling and cancer: Structural and functional consequences of
mutations in Smads. Mol Med Today. 4:257–262. 1998. View Article : Google Scholar : PubMed/NCBI
|
33
|
Li C, Hampson IN, Hampson L, Kumar P,
Bernabeu C and Kumar S: CD105 antagonizes the inhibitory signaling
of transforming growth factor beta1 on human vascular endothelial
cells. FASEB J. 14:55–64. 2000.PubMed/NCBI
|
34
|
Jerkic M, Rivas-Elena JV, Prieto M, Carrón
R, Sanz-Rodríguez F, Pérez-Barriocanal F, Rodríguez-Barbero A,
Bernabéu C and López-Novoa JM: Endoglin regulates nitric
oxide-dependent vasodilatation. FASEB J. 18:609–611.
2004.PubMed/NCBI
|
35
|
Jerkic M, Rodríguez-Barbero A, Prieto M,
Toporsian M, Pericacho M, Rivas-Elena JV, Obreo J, Wang A,
Barriocanal F Pérez, Arévalo M, et al: Reduced angiogenic responses
in adult Endoglin heterozygous mice. Cardiovasc Res. 69:845–854.
2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Alev C, McIntyre BA, Ota K and Sheng G:
Dynamic expression of Endoglin, a TGF-beta co-receptor, during
pre-circulation vascular development in chick. Int J Dev Biol.
54:737–742. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Folkman J, Watson K, Ingber D and Hanahan
D: Induction of angiogenesis during the transition from hyperplasia
to neoplasia. Nature. 339:58–61. 1989. View Article : Google Scholar : PubMed/NCBI
|
38
|
Cheifetz S, Bellón T, Calés C, Vera S,
Bernabeu C, Massagué J and Letarte M: Endoglin is a component of
the transforming growth factor-beta receptor system in human
endothelial cells. J Biol Chem. 267:19027–19030. 1992.PubMed/NCBI
|
39
|
Barbara NP, Wrana JL and Letarte M:
Endoglin is an accessory protein that interacts with the signaling
receptor complex of multiple members of the transforming growth
factor-beta superfamily. J Biol Chem. 274:584–594. 1999. View Article : Google Scholar : PubMed/NCBI
|
40
|
Li DY, Sorensen LK, Brooke BS, Urness LD,
Davis EC, Taylor DG, Boak BB and Wendel DP: Defective angiogenesis
in mice lacking endoglin. Science. 284:1534–1537. 1999. View Article : Google Scholar : PubMed/NCBI
|
41
|
Burrows FJ, Derbyshire EJ, Tazzari PL,
Amlot P, Gazdar AF, King SW, Letarte M, Vitetta ES and Thorpe PE:
Up-regulation of endoglin on vascular endothelial cells in human
solid tumors: Implications for diagnosis and therapy. Clin Cancer
Res. 1:1623–1634. 1995.PubMed/NCBI
|
42
|
Wang JM, Kumar S, Pye D, Haboubi N and
al-Nakib L: Breast carcinoma: Comparative study of tumor
vasculature using two endothelial cell markers. J Natl Cancer Inst.
86:386–388. 1994. View Article : Google Scholar : PubMed/NCBI
|
43
|
Duff SE, Li C, Garland JM and Kumar S:
CD105 is important for angiogenesis: Evidence and potential
applications. FASEB J. 17:984–992. 2003. View Article : Google Scholar : PubMed/NCBI
|
44
|
Pérez-Gómez E, Del Castillo G, Francisco S
Juan, López-Novoa JM, Bernabéu C and Quintanilla M: The role of the
TGF-β coreceptor endoglin in cancer. ScientificWorldJournal.
10:2367–2384. 2010. View Article : Google Scholar : PubMed/NCBI
|
45
|
Craft C, Romero D, Vary C and Bergan R:
Endoglin inhibits prostate cancer motility via activation of the
ALK2-Smad1 pathway. Oncogene. 26:7240–7250. 2007. View Article : Google Scholar : PubMed/NCBI
|
46
|
Oh H, Takagi H, Otani A, Koyama S,
Kemmochi S, Uemura A and Honda Y: Selective induction of
neuropilin-1 by vascular endothelial growth factor (VEGF): A
mechanism contributing to VEGF-induced angiogenesis. Proc Natl Acad
Sci USA. 99:383–388. 2002. View Article : Google Scholar : PubMed/NCBI
|
47
|
Stephenson JM, Banerjee S, Saxena NK,
Cherian R and Banerjee SK: Neuropilin-1 is differentially expressed
in myoepithelial cells and vascular smooth muscle cells in
preneoplastic and neoplastic human breast: A possible marker for
the progression of breast cancer. Int J Cancer. 101:409–414. 2002.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Yang H, Li M, Chai H, Yan S, Lin P,
Lumsden AB, Yao Q and Chen C: Effects of cyclophilin A on cell
proliferation and gene expressions in human vascular smooth muscle
cells and endothelial cells. J Surg Res. 123:312–319. 2005.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Broholm H and Laursen H: Vascular
endothelial growth factor (VEGF) receptor neuropilin-1′s
distribution in astrocytic tumors. APMIS. 112:257–263. 2004.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Fakhari M, Pullirsch D, Abraham D, Paya K,
Hofbauer R, Holzfeind P, Hofmann M and Aharinejad S: Selective
upregulation of vascular endothelial growth factor receptors
neuropilin-1 and −2 in human neuroblastoma. Cancer. 94:258–263.
2002. View Article : Google Scholar : PubMed/NCBI
|
51
|
Straume O and Akslen LA: Increased
expression of VEGF-receptors (FLT1, KDR, NRP-1) and
thrombospondin-1 is associated with glomeruloid microvascular
proliferation, an aggressive angiogenic phenotype, in malignant
melanoma. Angiogenesis. 6:295–301. 2003. View Article : Google Scholar : PubMed/NCBI
|
52
|
Miao HQ and Klagsbrun M: Neuropilin is a
mediator of angiogenesis. Cancer Metastasis Rev. 19:29–37. 2000.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Appleton BA, Wu P, Maloney J, Yin J, Liang
WC, Stawicki S, Mortara K, Bowman KK, Elliott JM, Desmarais W, et
al: Structural studies of neuropilin/antibody complexes provide
insights into semaphorin and VEGF binding. EMBO J. 26:4902–4912.
2007. View Article : Google Scholar : PubMed/NCBI
|
54
|
Yazdani U and Terman JR: The semaphorins.
Genome Biol. 7:2112006. View Article : Google Scholar : PubMed/NCBI
|
55
|
Janssen BJ, Malinauskas T, Weir GA, Cader
MZ, Siebold C and Jones EY: Neuropilins lock secreted semaphorins
onto plexins in a ternary signaling complex. Nat Struct Mol Biol.
19:1293–1299. 2012. View Article : Google Scholar : PubMed/NCBI
|
56
|
Lepelletier Y, Moura IC, Hadj-Slimane R,
Renand A, Fiorentino S, Baude C, Shirvan A, Barzilai A and Hermine
O: Immunosuppressive role of semaphorin-3A on T cell proliferation
is mediated by inhibition of actin cytoskeleton reorganization. Eur
J Immunol. 36:1782–1793. 2006. View Article : Google Scholar : PubMed/NCBI
|
57
|
Delgoffe GM, Woo SR, Turnis ME, Gravano
DM, Guy C, Overacre AE, Bettini ML, Vogel P, Finkelstein D,
Bonnevier J, et al: Stability and function of regulatory T cells is
maintained by a neuropilin-1-semaphorin-4a axis. Nature.
501:252–256. 2013. View Article : Google Scholar : PubMed/NCBI
|
58
|
Uniewicz KA and Fernig DG: Neuropilins: A
versatile partner of extracellular molecules that regulate
development and disease. Front Biosci. 13:4339–4360. 2008.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Roth L, Nasarre C, Dirrig-Grosch S, Aunis
D, Crémel G, Hubert P and Bagnard D: Transmembrane domain
interactions control biological functions of neuropilin-1. Mol Biol
Cell. 19:646–654. 2008. View Article : Google Scholar : PubMed/NCBI
|
60
|
Raimondi C and Ruhrberg C: Neuropilin
signalling in vessels, neurons and tumours. Semin Cell Dev Biol.
24:172–178. 2013. View Article : Google Scholar : PubMed/NCBI
|
61
|
Potiron VA, Roche J and Drabkin HA:
Semaphorins and their receptors in lung cancer. Cancer Lett.
273:1–14. 2009. View Article : Google Scholar : PubMed/NCBI
|
62
|
Potiron V and Roche J: Class 3 semaphorin
signaling: The end of a dogma. Sci STKE. 285:pe242005.
|
63
|
Kruger RP, Aurandt J and Guan KL:
Semaphorins command cells to move. Nat Rev Mol Cell Biol.
6:789–800. 2005. View Article : Google Scholar : PubMed/NCBI
|
64
|
Serini G, Napione L, Arese M and Bussolino
F: Besides the adhesion: New perspectives of integrin functions in
angiogenesis. Cardiovasc Res. 78:213–222. 2008. View Article : Google Scholar : PubMed/NCBI
|
65
|
Favier B, Alam A, Barron P, Bonnin J,
Laboudie P, Fons P, Mandron M, Herault JP, Neufeld G, Savi P, et
al: Neuropilin-2 interacts with VEGFR-2 and VEGFR-3 and promotes
human endothelial cell survival and migration. Blood.
108:1243–1250. 2006. View Article : Google Scholar : PubMed/NCBI
|
66
|
Kessler O, Shraga-Heled N, Lange T,
Gutmann-Raviv N, Sabo E, Baruch L, Machluf M and Neufeld G:
Semaphorin-3F is an inhibitor of tumor angiogenesis. Cancer Res.
64:1008–1015. 2004. View Article : Google Scholar : PubMed/NCBI
|
67
|
Chen H, Chédotal A, He Z, Goodman CS and
Tessier-Lavigne M: Neuropilin-2, a novel member of the neuropilin
family, is a high affinity receptor for the semaphorins Sema E and
Sema IV but not Sema III. Neuron. 19:547–559. 1997. View Article : Google Scholar : PubMed/NCBI
|
68
|
Giger RJ, Urquhart ER, Gillespie SK,
Levengood DV, Ginty DD and Kolodkin AL: Neuropilin-2 is a receptor
for semaphorin IV: Insight into the structural basis of receptor
function and specificity. Neuron. 21:1079–1092. 1998. View Article : Google Scholar : PubMed/NCBI
|
69
|
Karkkainen MJ and Petrova TV: Vascular
endothelial growth factor receptors in the regulation of
angiogenesis and lymphangiogenesis. Oncogene. 19:5598–5605. 2000.
View Article : Google Scholar : PubMed/NCBI
|
70
|
Rahimi N: Vascular endothelial growth
factor receptors: Molecular mechanisms of activation and
therapeutic potentials. Exp Eye Res. 83:1005–1016. 2006. View Article : Google Scholar : PubMed/NCBI
|
71
|
Kowanetz M and Ferrara N: Vascular
endothelial growth factor signaling pathways: Therapeutic
perspective. Clin Cancer Res. 12:5018–5022. 2006. View Article : Google Scholar : PubMed/NCBI
|
72
|
Cebe-Suarez S, Zehnder-Fjallman A and
Ballmer-Hofer K: The role of VEGF receptors in angiogenesis;
complex partnerships. Cell Mol Life Sci. 63:601–15. 2006.
View Article : Google Scholar : PubMed/NCBI
|
73
|
Iljin K, Karkkainen MJ, Lawrence EC, Kimak
MA, Uutela M, Katri JT, Alhonen PL, Halmekytö M, Finegold DN,
Ferrell RE and Alitalo K: VEGFR3 gene structure, regulatory region,
and sequence polymorphisms. FASEB J. 15:1028–1036. 2001. View Article : Google Scholar : PubMed/NCBI
|
74
|
Saharinen P, Tammela T, Karkkainen MJ and
Alitalo K: Lymphatic vasculature: Development, molecular regulation
and role in tumor metastasis and inflammation. Trends Immunol.
25:387–95. 2004. View Article : Google Scholar : PubMed/NCBI
|
75
|
Sadanandam A, Varney ML, Singh S, Ashour
AE, Moniaux N, Deb S, Lele SM, Batra SK and Singh RK: High gene
expression of semaphorin 5A in pancreatic cancer is associated with
tumor growth, invasion and metastasis. Int J Cancer. 127:1373–1383.
2010. View Article : Google Scholar : PubMed/NCBI
|
76
|
Pan G, Lv H, Ren H, Wang Y, Liu Y, Jiang H
and Wen J: Elevated expression of semaphorin 5A in human gastric
cancer and its implication in carcinogenesis. Life Sci. 86:139–144.
2010. View Article : Google Scholar : PubMed/NCBI
|
77
|
Pan GQ, Ren HZ, Zhang SF, Wang X and Wen
J: Expression of semaphorin 5A and its receptor plexin B3
contributes to invasion and metastasis of gastric carcinoma. World
J Gastroenterol. 15:2800–2804. 2009. View Article : Google Scholar : PubMed/NCBI
|
78
|
Resende C, Ristimaki A and Machado JC:
Genetic and epigenetic alteration in gastric carcinogenesis.
Helicobacter. 15:(Suppl 1). S34–S39. 2010. View Article : Google Scholar
|
79
|
Jiang SH, Wang Y, Yang JY, Li J, Feng MX,
Wang YH, Yang XM, He P, Tian GA, Zhang XX, et al: Overexpressed
EDIL3 predicts poor prognosis and promotes anchorage-independent
tumor growth in human pancreatic cancer. Oncotarget. 7:4226–4240.
2016. View Article : Google Scholar : PubMed/NCBI
|
80
|
Aoka Y, Johnson FL, Penta K, Hirata K Ki,
Hidai C, Schatzman R, Varner JA and Quertermous T: The embryonic
angiogenic factor Del1 accelerates tumor growth by enhancing
vascular formation. Microvasc Res. 64:148–161. 2002. View Article : Google Scholar : PubMed/NCBI
|
81
|
Sadanandam A, Rosenbaugh EG, Singh S,
Varney M and Singh RK: Semaphorin 5A promotes angiogenesis by
increasing endothelial cell proliferation, migration, and
decreasing apoptosis. Microvasc Res. 79:1–9. 2010. View Article : Google Scholar : PubMed/NCBI
|
82
|
Lu TP, Tsai MH, Lee JM, Hsu CP, Chen PC,
Lin CW, Shih JY, Yang PC, Hsiao CK, Lai LC and Chuang EY:
Identification of a novel biomarker, SEMA5A, for non-small cell
lung carcinoma in nonsmoking women. Cancer Epidemiol Biomarkers
Prev. 19:2590–2597. 2010. View Article : Google Scholar : PubMed/NCBI
|
83
|
Ferrara N and Kerbel RS: Angiogenesis as a
therapeutic target. Nature. 438:967–974. 2005. View Article : Google Scholar : PubMed/NCBI
|