1
|
Ferlay J, Shin HR, Bray F, Forman D,
Mathers C and Parkin DM: Estimates of worldwide burden of cancer in
2008: GLOBOCAN 2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2013. CA Cancer J Clin. 63:11–30. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Venook AP: Epidermal growth factor
receptor-targeted treatment for advanced colorectal carcinoma.
Cancer. 103:2435–2446. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wadlow RC, Hezel AF, Abrams TA,
Blaszkowsky LS, Fuchs CS, Kulke MH, Kwak EL, Meyerhardt JA, Ryan
DP, Szymonifka J, et al: Panitumumab in patients with KRAS
wild-type colorectal cancer after progression on cetuximab.
Oncologist. 17:142012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Karapetis CS, Khambata-Ford S, Jonker DJ,
O'Callaghan CJ, Tu D, Tebbutt NC, Simes RJ, Chalchal H, Shapiro JD,
Robitaille S, et al: K-ras mutations and benefit from cetuximab in
advanced colorectal cancer. N Engl J Med. 359:1757–1765. 2008.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Amado RG, Wolf M, Peeters M, Van Cutsem E,
Siena S, Freeman DJ, Juan T, Sikorski R, Suggs S, Radinsky R, et
al: Wild-type KRAS is required for panitumumab efficacy in patients
with metastatic colorectal cancer. J Clin Oncol. 26:1626–1634.
2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kranenburg O: The KRAS oncogene: Past,
present, and future. Biochim Biophys Acta. 1756:81–82.
2005.PubMed/NCBI
|
8
|
De Roock W, Jonker DJ, Di Nicolantonio F,
Sartore-Bianchi A, Tu D, Siena S, Lamba S, Arena S, Frattini M,
Piessevaux H, et al: Association of KRAS p.G13D mutation with
outcome in patients with chemotherapy-refractory metastatic
colorectal cancer treated with cetuximab. JAMA. 304:1812–1820.
2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Anderson SM: Laboratory methods for KRAS
mutation analysis. Expert Rev Mol Diagn. 11:635–642. 2011.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Lenz HJ: Testing for RAS mutations in
patients with metastatic colorectal cancer. Clin Adv Hematol Oncol.
12:48–49. 2014.PubMed/NCBI
|
11
|
Oldenburg RP, Liu MS and Kolodney MS:
Selective amplification of rare mutations using locked nucleic acid
oligonucleotides that competitively inhibit primer binding to
wild-type DNA. J Invest Dermatol. 128:398–402. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Huang Q, Wang GY, Huang JF, Zhang B and Fu
WL: High sensitive mutation analysis on KRAS gene using LNA/DNA
chimeras as PCR amplification blockers of wild-type alleles. Mol
Cell Probes. 24:376–380. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Dominguez PL and Kolodney MS: Wild-type
blocking polymerase chain reaction for detection of single
nucleotide minority mutations from clinical specimens. Oncogene.
24:6830–6834. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Huang JF, Zeng DZ, Duan GJ, Shi Y, Deng
GH, Xia H, Xu HQ, Zhao N, Fu WL and Huang Q: Single-tubed wild-type
blocking quantitative pcr detection assay for the sensitive
detection of codon 12 and 13 KRAS mutations. PLoS One.
10:e1456982015. View Article : Google Scholar
|
15
|
Di Giusto DA and King GC: Strong
positional preference in the interaction of LNA oligonucleotides
with DNA polymerase and proofreading exonuclease activities:
Implications for genotyping assays. Nucleic Acids Res. 32:e322004.
View Article : Google Scholar : PubMed/NCBI
|
16
|
You Y, Moreira BG, Behlke MA and Owczarzy
R: Design of LNA probes that improve mismatch discrimination.
Nucleic Acids Res. 34:e602006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bustin SA, Benes V, Garson JA, Hellemans
J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL,
et al: The MIQE guidelines: Minimum information for publication of
quantitative real-time PCR experiments. Clin Chem. 55:611–622.
2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Custodio A and Feliu J: Prognostic and
predictive biomarkers for epidermal growth factor receptor-targeted
therapy in colorectal cancer: Beyond KRAS mutations. Crit Rev Oncol
Hematol. 85:45–81. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kimura T, Okamoto K, Miyamoto H, Kimura M,
Kitamura S, Takenaka H, Muguruma N, Okahisa T, Aoyagi E, Kajimoto
M, et al: Clinical benefit of high-sensitivity KRAS mutation
testing in metastatic colorectal cancer treated with anti-EGFR
antibody therapy. Oncology. 82:298–304. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Smit VT, Boot AJ, Smits AM, Fleuren GJ,
Cornelisse CJ and Bos JL: KRAS codon 12 mutations occur very
frequently in pancreatic adenocarcinomas. Nucleic Acids Res.
16:7773–7782. 1988. View Article : Google Scholar : PubMed/NCBI
|
21
|
Eberhard DA, Johnson BE, Amler LC, Goddard
AD, Heldens SL, Herbst RS, Ince WL, Jänne PA, Januario T, Johnson
DH, et al: Mutations in the epidermal growth factor receptor and in
KRAS are predictive and prognostic indicators in patients with
non-small-cell lung cancer treated with chemotherapy alone and in
combination with erlotinib. J Clin Oncol. 23:5900–5909. 2005.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Lievre A, Bachet JB, Boige V, Cayre A, Le
Corre D, Buc E, Ychou M, Bouché O, Landi B, Louvet C, et al: KRAS
mutations as an independent prognostic factor in patients with
advanced colorectal cancer treated with cetuximab. J Clin Oncol.
26:374–379. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Itonaga M, Matsuzaki I, Warigaya K, Tamura
T, Shimizu Y, Fujimoto M, Kojima F, Ichinose M and Murata S: Novel
methodology for rapid detection of KRAS mutation using PNA-LNA
mediated loop-mediated isothermal amplification. PLoS One.
11:e1516542016. View Article : Google Scholar
|
24
|
Dono M, Massucco C, Chiara S, Sonaglio C,
Mora M, Truini A, Cerruti G, Zoppoli G, Ballestrero A, Truini M, et
al: Low percentage of KRAS mutations revealed by locked nucleic
acid polymerase chain reaction: Implications for treatment of
metastatic colorectal cancer. Mol Med. 18:1519–1526.
2013.PubMed/NCBI
|
25
|
Chen D, Yang Z, Xia H, Huang JF, Zhang Y,
Jiang TN, Wang GY, Chuai ZR, Fu WL and Huang Q: Enhanced
specificity of TPMT*2 genotyping using unidirectional wild-type and
mutant allele-specific scorpion primers in a single tube. PLoS One.
9:e918242014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yuryev A: PCR primer design using
statistical modeling. Methods Mol Biol. 402:93–104. 2007.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Wangkumhang P, Chaichoompu K, Ngamphiw C,
Ruangrit U, Chanprasert J, Assawamakin A and Tongsima S: WASP: A
Web-based Allele-Specific PCR assay designing tool for detecting
SNPs and mutations. BMC Genomics. 8:2752007. View Article : Google Scholar : PubMed/NCBI
|