1
|
Zarei S, Carr K, Reiley L, Diaz K, Guerra
O, Altamirano PF, Pagani W, Lodin D, Orozco G and Chinea A: A
comprehensive review of amyotrophic lateral sclerosis. Surg Neurol
Int. 6:1712015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Jeong SY, Rathore KI, Schulz K, Ponka P,
Arosio P and David S: Dysregulation of iron homeostasis in the CNS
contributes to disease progression in a mouse model of amyotrophic
lateral sclerosis. J Neurosci. 29:610–619. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hadzhieva M, Kirches E, Wilisch-Neumann A,
Pachow D, Wallesch M, Schoenfeld P, Paege I, Vielhaber S, Petri S,
Keilhoff G and Mawrin C: Dysregulation of iron protein expression
in the G93A model of amyotrophic lateral sclerosis. Neuroscience.
230:94–101. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hozumi I, Hasegawa T, Honda A, Ozawa K,
Hayashi Y, Hashimoto K, Yamada M, Koumura A, Sakurai T, Kimura A,
et al: Patterns of levels of biological metals in CSF differ among
neurodegenerative diseases. J Neurol Sci. 303:95–99. 2011.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Su XW, Clardy SL, Stephens HE, Simmons Z
and Connor JR: Serum ferritin is elevated in amyotrophic lateral
sclerosis patients. Amyotroph Lateral Scler Frontotemporal Degener.
16:102–107. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Langkammer C, Enzinger C, Quasthoff S,
Grafenauer P, Soellinger M, Fazekas F and Ropele S: Mapping of iron
deposition in conjunction with assessment of nerve fiber tract
integrity in amyotrophic lateral sclerosis. J Magn Reson Imaging.
31:1339–1345. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yu J, Qi F, Wang N, Gao P, Dai S, Lu Y, Su
Q, Du Y and Che F: Increased iron level in motor cortex of
amyotrophic lateral sclerosis patients: An in vivo MR study.
Amyotroph Lateral Scler Frontotemporal Degener. 15:357–361. 2014.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Kwan JY, Jeong SY, Van Gelderen P, Deng
HX, Quezado MM, Danielian LE, Butman JA, Chen L, Bayat E and
Russell J: Iron accumulation in deep cortical layers accounts for
MRI signal abnormalities in ALS: Correlating 7 tesla MRI and
pathology. PLoS One. 7:e352412012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Reznichenko L, Amit T, Zheng H,
Avramovich-Tirosh Y, Youdim MB, Weinreb O and Mandel S: Reduction
of iron-regulated amyloid precursor protein and beta-amyloid
peptide by (−)-epigallocatechin-3-gallate in cell cultures:
Implications for iron chelation in Alzheimer's disease. J
Neurochem. 97:527–536. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Weinreb O, Amit T and Youdim MB: The
application of proteomics for studying the neurorescue activity of
the polyphenol (−)-epigallocatechin-3-gallate. Arch Biochem
Biophys. 476:152–160. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Mandel S, Weinreb O, Amit T and Youdim MB:
Cell signaling pathways in the neuroprotective actions of the green
tea polyphenol (−)-epigallocatechin-3-gallate: Implications for
neurodegenerative diseases. J Neurochem. 88:1555–1569. 2004.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Koh SH, Lee SM, Kim HY, Lee KY, Lee YJ,
Kim HT, Kim J, Kim MH, Hwang MS, Song C, et al: The effect of
epigallocatechin gallate on suppressing disease progression of ALS
model mice. Neurosci Lett. 395:103–107. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Xu Z, Chen S, Li X, Luo G, Li L and Le W:
Neuroprotective effects of (−)-epigallocatechin-3-gallate in a
transgenic mouse model of amyotrophic lateral sclerosis. Neurochem
Res. 31:1263–1269. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Rothstein JD, Jin L, Dykes-Hoberg M and
Kuncl RW: Chronic inhibition of glutamate uptake produces a model
of slow neurotoxicity. Proc Natl Acad Sci USA. 90:6591–6595. 1993.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Yu J, Guo Y, Sun M, Li B, Zhang Y and Li
C: Iron is a potential key mediator of glutamate excitotoxicity in
spinal cord motor neurons. Brain Res. 27:102–107. 2009. View Article : Google Scholar
|
16
|
Yu J, Jia Y, Guo Y, Chang G, Duan W, Sun
M, Li B and Li C: Epigallocatechin-3-gallate protects motor neurons
and regulates glutamate level. FEBS Lett. 584:2921–2925. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Jomova K, Vondrakova D, Lawson M and Valko
M: Metals, oxidative stress and neurodegenerative disorders. Mol
Cell Biochem. 345:91–104. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Petri S, Korner S and Kiaei M: Nrf2/ARE
signaling pathway: Key mediator in oxidative stress and potential
therapeutic target in ALS. Neurol Res Int.
2012:8780302012.PubMed/NCBI
|
19
|
Hadzhieva M, Kirches E and Mawrin C:
Review: Iron metabolism and the role of iron in neurodegenerative
disorders. Neuropathol Appl Neurobiol. 40:240–257. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ward RJ, Dexter DT and Crichton RR:
Neurodegenerative diseases and therapeutic strategies using iron
chelators. J Trace Elem Med Biol. 31:267–273. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Silani V, Braga M, Ciammola A, Cardin V
and Scarlato G: Motor neurones in culture as a model to study ALS.
J Neurol. 247:(Suppl 1). SI28–SI36. 2000. View Article : Google Scholar
|
22
|
Carriedo SG, Sensi SL, Yin HZ and Weiss
JH: AMPA exposures induce mitochondrial Ca(2+) overload and ROS
generation in spinal motor neurons in vitro. J Neurosci.
20:240–250. 2000.PubMed/NCBI
|
23
|
Mandel S and Youdim MB: Catechin
polyphenols: Neurodegeneration and neuroprotection in
neurodegenerative diseases. Free Radic Biol Med. 37:304–317. 2004.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Weinreb O, Amit T, Mandel S and Youdim MB:
Neuroprotective molecular mechanisms of
(−)-epigallocatechin-3-gallate: A reflective outcome of its
antioxidant, iron chelating and neuritogenic properties. Genes
Nutr. 4:283–296. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Mandel SA, Avramovich-Tirosh Y,
Reznichenko L, Zheng H, Weinreb O, Amit T and Youdim MB:
Multifunctional activities of green tea catechins in
neuroprotection. Modulation of cell survival genes, iron-dependent
oxidative stress and PKC signaling pathway. Neurosignals. 14:46–60.
2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Mandel SA, Amit T, Kalfon L, Reznichenko
L, Weinreb O and Youdim MB: Cell signaling pathways and iron
chelation in the neurorestorative activity of green tea
polyphenols: Special reference to epigallocatechin gallate (EGCG).
J Alzheimers Dis. 15:211–222. 2008. View Article : Google Scholar : PubMed/NCBI
|