1
|
Dugbartey AT: Neurocognitive aspects of
hypothyroidism. Arch Intern Med. 158:1413–1418. 1998. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhu DF, Wang ZX, Zhang DR, Pan ZL, He S,
Hu XP, Chen XC and Zhou JN: fMRI revealed neural substrate for
reversible working memory dysfunction in subclinical
hypothyroidism. Brain. 129:2923–2930. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jessell TM and Kandel ER: Synaptic
transmission: A bidirectional and self-modifiable form of cell-cell
communication. Cell. 72:(Suppl). S1–S30. 1993. View Article : Google Scholar
|
4
|
Zhou Q, Lai Y, Bacaj T, Zhao M, Lyubimov
AY, Uervirojnangkoorn M, Zeldin OB, Brewster AS, Sauter NK, Cohen
AE, et al: Architecture of the synaptotagmin-SNARE machinery for
neuronal exocytosis. Nature. 525:62–67. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Mehta PP, Battenberg E and Wilson MC:
SNAP-25 and synaptotagmin involvement in the final
Ca(2+)-dependent triggering of neurotransmitter
exocytosis. Proc Natl Acad Sci USA. 93:10471–10476. 1996.
View Article : Google Scholar : PubMed/NCBI
|
6
|
de Wit H, Walter AM, Milosevic I,
Gulyás-Kovács A, Riedel D, Sørensen JB and Verhage M:
Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25
acceptor complexes. Cell. 138:935–946. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sudhof TC: The synaptic vesicle cycle.
Annu Rev Neurosci. 27:509–547. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Chapman ER: How does synaptotagmin trigger
neurotransmitter release? Annu Rev Biochem. 77:615–641. 2008.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Salvati S, Attorri L, Campeggi LM,
Olivieri A, Sorcini M, Fortuna S and Pintor A: Effect of
propylthiouracil-induced hypothyroidism on cerebral cortex of young
and aged rats: Lipid composition of synaptosomes, muscarinic
receptor sites, and acetylcholinesterase activity. Neurochem Res.
19:1181–1186. 1994. View Article : Google Scholar : PubMed/NCBI
|
10
|
Carageorgiou H, Pantos C, Zarros A,
Mourouzis I, Varonos D, Cokkinos D and Tsakiris S: Changes in
antioxidant status, protein concentration, acetylcholinesterase,
(Na+, K+)-, and Mg2+- ATPase
activities in the brain of hyper- and hypothyroid adult rats. Metab
Brain Dis. 20:129–139. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Carageorgiou H, Pantos C, Zarros A,
Stolakis V, Mourouzis I, Cokkinos D and Tsakiris S: Changes in
acetylcholinesterase, Na+, K+-ATPase, and
Mg2+-ATPase activities in the frontal cortex and the
hippocampus of hyper- and hypothyroid adult rats. Metabolism.
56:1104–1110. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yang HY, Sun CP, Jia XM, Gui L, Zhu DF and
Ma WQ: Effect of thyroxine on SNARE complex and synaptotagmin-1
expression in the prefrontal cortex of rats with adult-onset
hypothyroidism. J Endocrinol Invest. 35:312–316. 2012.PubMed/NCBI
|
13
|
Liu CL, Xu YX, Zhan Y, Hu HL, Jia XM, Chen
GH and Zhu DF: Effect of thyroxine on synaptotagmin 1 and SNAP-25
expression in dorsal hippocampus of adult-onset hypothyroid rats. J
Endocrinol Invest. 34:280–286. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang F, Zeng X, Zhu Y, Ning D, Liu J, Liu
C, Jia X and Zhu D: Effects of thyroxine and donepezil on
hippocampal acetylcholine content, acetylcholinesterase activity,
synaptotagmin-1 and SNAP-25 expression in hypothyroid adult rats.
Mol Med Rep. 11:775–782. 2015.PubMed/NCBI
|
15
|
No authors listed: Drugs for
hypothyroidism. Med Lett Drugs Ther. 57:147–150. 2015.PubMed/NCBI
|
16
|
Wekking EM, Appelhof BC, Fliers E, Schene
AH, Huyser J, Tijssen JG and Wiersinga WM: Cognitive functioning
and well-being in euthyroid patients on thyroxine replacement
therapy for primary hypothyroidism. Eur J Endocrinol. 153:747–753.
2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Samuels MH, Schuff KG, Carlson NE, Carello
P and Janowsky JS: Health status, psychological symptoms, mood, and
cognition in L-thyroxine-treated hypothyroid subjects. Thyroid.
17:249–258. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Saravanan P, Chau WF, Roberts N, Vedhara
K, Greenwood R and Dayan CM: Psychological well-being in patients
on ‘adequate’ doses of l-thyroxine: Results of a large, controlled
community-based questionnaire study. Clin Endocrinol (Oxf).
57:577–585. 2002. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang N, Cai Y, Wang F, Zeng X, Jia X, Tao
F and Zhu D: Effects of thyroxin and donepezil on hippocampal
acetylcholine content and syntaxin-1 and munc-18 expression in
adult rats with hypothyroidism. Exp Ther Med. 7:529–536.
2014.PubMed/NCBI
|
20
|
Madeira MD, Sousa N, Lima-Andrade MT,
Calheiros F, Cadete-Leite A and Paula-Barbosa MM: Selective
vulnerability of the hippocampal pyramidal neurons to
hypothyroidism in male and female rats. J Comp Neurol. 322:501–518.
1992. View Article : Google Scholar : PubMed/NCBI
|
21
|
Madeira MD, Cadete-Leite A, Andrade JP and
Paula-Barbosa MM: Effects of hypothyroidism upon the granular layer
of the dentate gyrus in male and female adult rats: A morphometric
study. J Comp Neurol. 314:171–186. 1991. View Article : Google Scholar : PubMed/NCBI
|
22
|
Pepeu G and Giovannini MG: Cholinesterase
inhibitors and beyond. Curr Alzheimer Res. 6:86–96. 2009.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Yoshiyama Y, Kojima A, Ishikawa C and Arai
K: Anti-inflammatory action of donepezil ameliorates tau pathology,
synaptic loss and neurodegeneration in a tauopathy mouse model. J
Alzheimers Dis. 22:295–306. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Riepe MW: Cholinergic treatment: What are
the early neuropathological targets? Eur J Neurol. 12:(Suppl 3).
S3–S9. 2005. View Article : Google Scholar
|
25
|
Gerges NZ, Stringer JL and Alkadhi KA:
Combination of hypothyroidism and stress abolishes early LTP in the
CA1 but not dentate gyrus of hippocampus of adult rats. Brain Res.
922:250–260. 2001. View Article : Google Scholar : PubMed/NCBI
|
26
|
Cortes C, Eugenin E, Aliaga E, Carreño LJ,
Bueno SM, Gonzalez PA, Gayol S, Naranjo D, Noches V, Marassi MP, et
al: Hypothyroidism in the adult rat causes incremental changes in
brain-derived neurotrophic factor, neuronal and astrocyte
apoptosis, gliosis, and deterioration of postsynaptic density.
Thyroid. 22:951–963. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Madeira MD and Paula-Barbosa MM:
Reorganization of mossy fiber synapses in male and female
hypothyroid rats: A stereological study. J Comp Neurol.
337:334–352. 1993. View Article : Google Scholar : PubMed/NCBI
|
28
|
David S and Nathaniel EJ: Neuronal changes
induced by neonatal hypothyroidism: An ultrastructural study. Am J
Anat. 167:381–394. 1983. View Article : Google Scholar : PubMed/NCBI
|
29
|
Gold PE: Acetylcholine modulation of
neural systems involved in learning and memory. Neurobiol Learn
Mem. 80:194–210. 2003. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bartus RT, Dean RL III, Beer B and Lippa
AS: The cholinergic hypothesis of geriatric memory dysfunction.
Science. 217:408–414. 1982. View Article : Google Scholar : PubMed/NCBI
|
31
|
Molinengo L, Cassone MC and Oggero L:
Action of hypo- and hyperthyroidism on the postmortal decay of
acetylcholine in the rat spinal cord. Neuroendocrinology. 42:28–31.
1986. View Article : Google Scholar : PubMed/NCBI
|
32
|
Virgili M, Saverino O, Vaccari M, Barnabei
O and Contestabile A: Temporal, regional and cellular selectivity
of neonatal alteration of the thyroid state on neurochemical
maturation in the rat. Exp Brain Res. 83:555–561. 1991. View Article : Google Scholar : PubMed/NCBI
|
33
|
Carageorgiou H, Pantos C, Zarros A,
Stolakis V, Mourouzis I, Cokkinos D and Tsakiris S: Effects of
hyper- and hypothyroidism on acetylcholinesterase,
(Na(+), K (+))- and Mg (2+)-ATPase
activities of adult rat hypothalamus and cerebellum. Metab Brain
Dis. 22:31–38. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kundu S, Pramanik M, Roy S, De J, Biswas A
and Ray AK: Maintenance of brain thyroid hormone level during
peripheral hypothyroid condition in adult rat. Life Sci.
79:1450–1455. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Semba K: Phylogenetic and ontogenetic
aspects of the basal forebrain cholinergic neurons and their
innervation of the cerebral cortex. Prog Brain Res. 145:3–43.
2004.PubMed/NCBI
|
36
|
Owasoyo JO, Egbunike GN and Iramain CA:
The influence of thyroid gland and thyroxine on the
acetylcholinesterase activity of rat brain and adenohypophysis.
Endokrinologie. 77:242–246. 1981.PubMed/NCBI
|
37
|
Cao L, Jiang W, Wang F, Yang QG, Wang C,
Chen YP and Chen GH: The reduced serum free triiodothyronine and
increased dorsal hippocampal SNAP-25 and Munc18-1 had existed in
middle-aged CD-1 mice with mild spatial cognitive impairment. Brain
Res. 1540:9–20. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Quintanar JL and Salinas E: Effect of
hypothyroidism on synaptosomal-associated protein of 25 kDa and
syntaxin-1 expression in adenohypophyses of rat. J Endocrinol
Invest. 25:754–758. 2002. View Article : Google Scholar : PubMed/NCBI
|
39
|
Vara H, Martínez B, Santos A and Colino A:
Thyroid hormone regulates neurotransmitter release in neonatal rat
hippocampus. Neuroscience. 110:19–28. 2002. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ruiz-Marcos A, Sánchez-Toscano F, del
Escobar Rey F and de Morreale Escobar G: Reversible morphological
alterations of cortical neurons in juvenile and adult
hypothyroidism in the rat. Brain Res. 185:91–102. 1980. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ruiz-Marcos A, Salas J, Sanchez-Toscano F,
del Escobar Rey F and de Morreale Escobar G: Effect of neonatal and
adult-onset hypothyroidism on pyramidal cells of the rat auditory
cortex. Brain Res. 285:205–213. 1983. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ruiz-Marcos A, Sanchez-Toscano F, del
Escobar Rey F and de Morreale Escobar G: Severe hypothyroidism and
the maturation of the rat cerebral cortex. Brain Res. 162:315–329.
1979. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ipina SL, Ruiz-Marcos A, del Escobar Rey F
and de Morreale Escobar G: Pyramidal cortical cell morphology
studied by multivariate analysis: Effects of neonatal
thyroidectomy, ageing and thyroxine-substitution therapy. Brain
Res. 465:219–229. 1987. View Article : Google Scholar : PubMed/NCBI
|
44
|
Honegger P and Lenoir D: Triodothyronine
enhancement of neuronal differentiation in aggregating fetal rat
brain cells cultured in a chemically defined medium. Brain Res.
199:425–434. 1980. View Article : Google Scholar : PubMed/NCBI
|
45
|
Akuzawa K and Wakabayashi K: A serum-free
culture of the neurons in the septal, preoptic and hypothalamic
region. Endocrinol Jpn. 32:163–173. 1985. View Article : Google Scholar : PubMed/NCBI
|
46
|
Alzoubi KH, Gerges NZ and Alkadhi KA:
Levothyroxin restores hypothyroidism-induced impairment of LTP of
hippocampal CA1: Electrophysiological and molecular studies. Exp
Neurol. 195:330–341. 2005. View Article : Google Scholar : PubMed/NCBI
|
47
|
Saiyed M and Riker WK: Cholinergic and
anticholinergic drug effects on survival during hypoxia:
Significant gender differences. J Pharmacol Exp Ther.
264:1146–1153. 1993.PubMed/NCBI
|
48
|
Dimitrova DS and Getova-Spassova DP:
Effects of galantamine and donepezil on active and passive
avoidance tests in rats with induced hypoxia. J Pharmacol Sci.
101:199–204. 2006. View Article : Google Scholar : PubMed/NCBI
|
49
|
Alcantara-Gonzalez F, Juarez I, Solis O,
Martinez-Tellez I, Camacho-Abrego I, Masliah E, Mena R and Flores
G: Enhanced dendritic spine number of neurons of the prefrontal
cortex, hippocampus and nucleus accumbens in old rats after chronic
donepezil administration. Synapse. 64:786–793. 2010.PubMed/NCBI
|
50
|
Akasofu S, Kimura M, Kosasa T, Sawada K
and Ogura H: Study of neuroprotection of donepezil, a therapy for
Alzheimer's disease. Chem Biol Interact. 175:222–226. 2008.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Akaike A, Takada-Takatori Y, Kume T and
Izumi Y: Mechanisms of neuroprotective effects of nicotine and
acetylcholinesterase inhibitors: Role of alpha4 and alpha7
receptors in neuroprotection. J Mol Neurosci. 40:211–216. 2010.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Shen H, Kihara T, Hongo H, Wu X, Kem WR,
Shimohama S, Akaike A, Niidome T and Sugimoto H: Neuroprotection by
donepezil against glutamate excitotoxicity involves stimulation of
alpha7 nicotinic receptors and internalization of NMDA receptors.
Br J Pharmacol. 161:127–139. 2010. View Article : Google Scholar : PubMed/NCBI
|
53
|
Takada-Takatori Y, Kume T, Izumi Y, Ohgi
Y, Niidome T, Fujii T, Sugimoto H and Akaike A: Roles of nicotinic
receptors in acetylcholinesterase inhibitor-induced neuroprotection
and nicotinic receptor up-regulation. Biol Pharm Bull. 32:318–324.
2009. View Article : Google Scholar : PubMed/NCBI
|
54
|
Meunier J, Ieni J and Maurice T: The
anti-amnesic and neuroprotective effects of donepezil against
amyloid beta25-35 peptide-induced toxicity in mice involve an
interaction with the sigma1 receptor. Br J Pharmacol. 149:998–1012.
2006. View Article : Google Scholar : PubMed/NCBI
|