1
|
Eyre S, Bowes J, Diogo D, Lee A, Barton A,
Martin P, Zhernakova A, Stahl E, Viatte S, McAllister K, et al:
High-density genetic mapping identifies new susceptibility loci for
rheumatoid arthritis. Nat Genet. 44:1336–1340. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Schellekens GA, de Jong B, van den Hoogen
F, van de Putte L and van Venrooij WJ: Pillars article: Citrulline
is an essential constituent of antigenic determinants recognized by
rheumatoid arthritis-specific autoantibodies. J Clin Invest.
101:273–281. 1998. View
Article : Google Scholar : PubMed/NCBI
|
3
|
McInnes IB and Schett G: The pathogenesis
of rheumatoid arthritis. N Engl J Med. 365:2205–2219. 2011.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Stahl EA, Raychaudhuri S, Remmers EF, Xie
G, Eyre S, Thomson BP, Li Y, Kurreeman FA, Zhernakova A, Hinks A,
et al: Genome-wide association study meta-analysis identifies seven
new rheumatoid arthritis risk loci. Nat Genet. 42:508–514. 2010.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhernakova A, Stahl EA, Trynka G,
Raychaudhuri S, Festen EA, Franke L, Westra HJ, Fehrmann RS,
Kurreeman FA, Thomson B, et al: Meta-analysis of genome-wide
association studies in celiac disease and rheumatoid arthritis
identifies fourteen non-HLA shared loci. PLoS Genet.
7:e10020042011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Letter AJ: Classifying rheumatoid
arthritis risk with genetic subgroups using genome-wide
association. Medical College of Georgia. 2010.
|
7
|
Glazko GV and Emmert-Streib F: Unite and
conquer: Univariate and multivariate approaches for finding
differentially expressed gene sets. Bioinformatics. 25:2348–2354.
2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Khatri P, Sirota M and Butte AJ: Ten years
of pathway analysis: Current approaches and outstanding challenges.
PLoS Comput Biol. 8:e10023752012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ertel A, Verghese A, Byers SW, Ochs M and
Tozeren A: Pathway-specific differences between tumor cell lines
and normal and tumor tissue cells. Mol Cancer. 5:552006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Horvát EÁ, Zhang JD, Uhlmann S, Sahin Ö
and Zweig KA: A network-based method to assess the statistical
significance of mild co-regulation effects. PLoS One. 8:e734132013.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Bienkowska J, Allaire N, Thai A, Goyal J,
Plavina T, Nirula A, Weaver M, Newman C, Petri M, Beckman E and
Browning JL: Lymphotoxin-LIGHT pathway regulates the interferon
signature in rheumatoid arthritis. PLoS One. 9:e1125452014.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Croft D, O'Kelly G, Wu G, Haw R, Gillespie
M, Matthews L, Caudy M, Garapati P, Gopinath G, Jassal B, et al:
Reactome: A database of reactions, pathways and biological
processes. Nucleic Acids Res. 39:(Database issue). D691–D697. 2011.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Ahn T, Lee E, Huh N and Park T:
Personalized identification of altered pathways in cancer using
accumulated normal tissue data. Bioinformatics. 30:i422–i429. 2014.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Myers L and Sirois MJ: Spearman
correlation coefficients, differences between. Wiley StatsRef:
Statistics Reference Online. 2006.
|
15
|
Smoot ME, Ono K, Ruscheinski J, Wang PL
and Ideker T: Cytoscape 2.8: New features for data integration and
network visualization. Bioinformatics. 27:431–432. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Haythornthwaite C: Social network
analysis: An approach and technique for the study of information
exchange. Libr Inf Sci Res. 18:323–342. 1996. View Article : Google Scholar
|
17
|
Srihari S and Leong HW: A survey of
computational methods for protein complex prediction from protein
interaction networks. J Bioinform Comput Biol. 11:12300022013.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Nepusz T, Yu H and Paccanaro A: Detecting
overlapping protein complexes in protein-protein interaction
networks. Nat Methods. 9:471–472. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mukhopadhyay A, Ray S and De M: Detecting
protein complexes in a PPI network: A gene ontology based
multi-objective evolutionary approach. Mol Biosyst. 8:3036–3048.
2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ein-Dor L, Kela I, Getz G, Givol D and
Domany E: Outcome signature genes in breast cancer: Is there a
unique set? Bioinformatics. 21:171–178. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang L, Li S, Hao C, Hong G, Zou J, Zhang
Y, Li P and Guo Z: Extracting a few functionally reproducible
biomarkers to build robust subnetwork-based classifiers for the
diagnosis of cancer. Gene. 526:232–238. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Nibbe RK, Chowdhury SA, Koyutürk M, Ewing
R and Chance MR: Protein-protein interaction networks and
subnetworks in the biology of disease. Wiley Interdiscip Rev Syst
Biol Med. 3:357–367. 2011. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Wu Y, Jing R, Jiang L, Jiang Y, Kuang Q,
Ye L, Yang L, Li Y and Li M: Combination use of protein-protein
interaction network topological features improves the predictive
scores of deleterious non-synonymous single-nucleotide
polymorphisms. Amino Acids. 46:2025–2035. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li P, Sheng J, Liu Y, Li J, Liu J and Wang
F: Heparosan-derived heparan sulfate/heparin-like compounds: One
kind of potential therapeutic agents. Med Res Rev. 33:665–692.
2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Dagälv A, Holmborn K, Kjellén L and Åbrink
M: Lowered expression of heparan sulfate/heparin biosynthesis
enzyme N-deacetylase/N-sulfotransferase 1 results in increased
sulfation of mast cell heparin. J Biol Chem. 286:44433–44440. 2011.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Tumova S, Woods A and Couchman JR: Heparan
sulfate proteoglycans on the cell surface: Versatile coordinators
of cellular functions. Int J Biochem Cell Biol. 32:269–288. 2000.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Li RW, Freeman C, Yu D, Hindmarsh EJ,
Tymms KE, Parish CR and Smith PN: Dramatic regulation of heparanase
activity and angiogenesis gene expression in synovium from patients
with rheumatoid arthritis. Arthritis Rheum. 58:1590–1600. 2008.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Gong F, Jemth P, Galvis ML Escobar,
Vlodavsky I, Horner A, Lindahl U and Li JP: Processing of
macromolecular heparin by heparanase. J Biol Chem. 278:35152–35158.
2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Pikas DS, Li JP, Vlodavsky I and Lindahl
U: Substrate specificity of heparanases from human hepatoma and
platelets. J Biol Chem. 273:18770–18777. 1998. View Article : Google Scholar : PubMed/NCBI
|
30
|
Shin K, Nigrovic PA, Crish J, Boilard E,
McNeil HP, Larabee KS, Adachi R, Gurish MF, Gobezie R, Stevens RL
and Lee DM: Mast cells contribute to autoimmune inflammatory
arthritis via their tryptase/heparin complexes. J Immunol.
182:647–656. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Galvis ML Escobar, Jia J, Zhang X,
Jastrebova N, Spillmann D, Gottfridsson E, van Kuppevelt TH,
Zcharia E, Vlodavsky I, Lindahl U and Li J: Transgenic or
tumor-induced expression of heparanase upregulates sulfation of
heparan sulfate. Nat Chem Biol. 3:773–778. 2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ballabio A and Gieselmann V: Lysosomal
disorders: From storage to cellular damage. Biochim Biophys Acta.
1793:684–696. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Li JP and Vlodavsky I: Heparin, heparan
sulfate and heparanase in inflammatory reactions. Thromb Haemost.
102:823–828. 2009.PubMed/NCBI
|
34
|
Edovitsky E, Lerner I, Zcharia E, Peretz
T, Vlodavsky I and Elkin M: Role of endothelial heparanase in
delayed-type hypersensitivity. Blood. 107:3609–3616. 2006.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Belcher C, Yaqub R, Fawthrop F, Bayliss M
and Doherty M: Synovial fluid chondroitin and keratan sulphate
epitopes, glycosaminoglycans, and hyaluronan in arthritic and
normal knees. Ann Rheum Dis. 56:299–307. 1997. View Article : Google Scholar : PubMed/NCBI
|
36
|
Funderburgh JL: Keratan sulfate:
Structure, biosynthesis, and function. Glycobiology. 10:951–958.
2000. View Article : Google Scholar : PubMed/NCBI
|
37
|
Winsz-Szczotka K, Komosińska-Vassev K,
Kuźnik-Trocha K, Siwiec A, Żegleń B and Olczyk K: Circulating
keratan sulfate as a marker of metabolic changes of cartilage
proteoglycan in juvenile idiopathic arthritis; influence of growth
factors as well as proteolytic and prooxidative agents on aggrecan
alterations. Clin Chem Lab Med. 53:291–297. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hayashi M, Kadomatsu K and Ishiguro N:
Keratan sulfate suppresses cartilage damage and ameliorates
inflammation in an experimental mice arthritis model. Biochem
Biophys Res Commun. 401:463–468. 2010. View Article : Google Scholar : PubMed/NCBI
|