1
|
Prudova A, Bauman Z, Braun A, Vitvitsky V,
Lu SC and Banerjee R: S-adenosylmethionine stabilizes cystathionine
beta-synthase and modulates redox capacity. Proc Natl Acad Sci USA.
103:6489–6494. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Selhub J: Homocysteine metabolism. Annu
Rev Nutr. 19:217–246. 1999. View Article : Google Scholar : PubMed/NCBI
|
3
|
Van Dam F and Van Gool WA:
Hyperhomocysteinemia and Alzheimer's disease: A systematic review.
Arch Gerontol Geriatr. 48:425–430. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Seshadri S, Beiser A, Selhub J, Jacques
PF, Rosenberg IH, D'Agostino RB, Wilson PW and Wolf PA: Plasma
homocysteine as a risk factor for dementia and Alzheimer's disease.
N Engl J Med. 346:476–483. 2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
Miller JW: Homocysteine and Alzheimer's
disease. Nutr Rev. 57:126–129. 1999.PubMed/NCBI
|
6
|
Clarke R, Smith AD, Jobst KA, Refsum H,
Sutton L and Ueland PM: Folate, vitamin B12, and serum total
homocysteine levels in confirmed Alzheimer disease. Arch Neurol.
55:1449–1455. 1998. View Article : Google Scholar : PubMed/NCBI
|
7
|
Dwyer BE, Raina AK, Perry G and Smith MA:
Homocysteine and Alzheimer's disease: A modifiable risk? Free Radic
Biol Med. 36:1471–1475. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sharma GS, Kumar T, Dar TA and Singh LR:
Protein N-homocysteinylation: From cellular toxicity to
neurodegeneration. Biochim Biophys Acta. 1850:2239–2245. 2015.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Lin N, Qin S, Luo S, Cui S, Huang G and
Zhang X: Homocysteine induces cytotoxicity and proliferation
inhibition in neural stem cells via DNA methylation in vitro. FEBS
J. 281:2088–2096. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Abushik PA, Niittykoski M, Giniatullina R,
Shakirzyanova A, Bart G, Fayuk D, Sibarov DA, Antonov SM and
Giniatullin R: The role of NMDA and mGluR5 receptors in calcium
mobilization and neurotoxicity of homocysteine in trigeminal and
cortical neurons and glial cells. J Neurochem. 129:264–274. 2014.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Park YJ, Ko JW, Jang Y and Kwon YH:
Activation of AMP-activated protein kinase alleviates
homocysteine-mediated neurotoxicity in SH-SY5Y cells. Neurochem
Res. 38:1561–1571. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hoozemans JJ, Veerhuis R, Van Haastert ES,
Rozemuller JM, Baas F, Eikelenboom P and Scheper W: The unfolded
protein response is activated in Alzheimer's disease. Acta
Neuropathol. 110:165–172. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Salminen A, Kauppinen A, Suuronen T,
Kaarniranta K and Ojala J: ER stress in Alzheimer's disease: A
novel neuronal trigger for inflammation and Alzheimer's pathology.
J Neuroinflammation. 6:412009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Cornejo VH and Hetz C: The unfolded
protein response in Alzheimer's disease. Semin Immunopathol.
35:277–292. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Althausen S and Paschen W:
Homocysteine-induced changes in mRNA levels of genes coding for
cytoplasmic- and endoplasmic reticulum-resident stress proteins in
neuronal cell cultures. Brain Res Mol Brain Res. 84:32–40. 2000.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Chigurupati S, Wei Z, Belal C, Vandermey
M, Kyriazis GA, Thiruma V, Arumugam TV and Chan SL: The
homocysteine-inducible endoplasmic reticulum stress protein
counteracts calcium store depletion and induction of CCAAT
enhancer-binding protein homologous protein in a neurotoxin model
of Parkinson disease. J Biol Chem. 284:18323–18333. 2009.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Kim HJ, Cho HK and Kwon YH: Synergistic
induction of ER stress by homocysteine and beta-amyloid in SH-SY5Y
cells. J Nutr Biochem. 19:754–761. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Park YJ, Jang Y and Kwon YH: Protective
effect of isoflavones against homocysteine-mediated neuronal
degeneration in SH-SY5Y cells. Amino Acids. 39:785–794. 2010.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhou CF and Tang XQ: Hydrogen sulfide and
nervous system regulation. Chin Med J (Engl). 124:3576–3582.
2011.PubMed/NCBI
|
20
|
Łowicka E and Beltowski J: Hydrogen
sulfide (H2S)-the third gas of interest for pharmacologists.
Pharmacol Rep. 59:4–24. 2007.PubMed/NCBI
|
21
|
Kimura H, Shibuya N and Kimura Y: Hydrogen
sulfide is a signaling molecule and a cytoprotectant. Antioxid
Redox Signal. 17:45–57. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hu LF, Lu M, Wong PT Hon and Bian JS:
Hydrogen sulfide: Neurophysiology and neuropathology. Antioxid
Redox Signal. 15:405–419. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Qu K, Lee SW, Bian JS, Low CM and Wong PT:
Hydrogen sulfide: Neurochemistry and neurobiology. Neurochem Int.
52:155–165. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tang XQ, Shen XT, Huang YE, Chen RQ, Ren
YK, Fang HR, Zhuang YY and Wang CY: Inhibition of endogenous
hydrogen sulfide generation is associated with homocysteine-induced
neurotoxicity: Role of ERK1/2 activation. J Mol Neurosci. 45:60–67.
2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tang XQ, Shen XT, Huang YE, Ren YK, Chen
RQ, Hu B, He JQ, Yin WL, Xu JH and Jiang ZS: Hydrogen sulfide
antagonizes homocysteine-induced neurotoxicity in PC12 cells.
Neurosci Res. 68:241–249. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chen J, Zhou Y, Mueller-Steiner S, Chen
LF, Kwon H, Yi S, Mucke L and Gan L: SIRT1 protects against
microglia-dependent amyloid-beta toxicity through inhibiting
NF-kappaB signaling. J Biol Chem. 280:40364–40374. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen
L, Zhao W, Thiyagarajan M, MacGrogan D, Rodgers JT, et al: Neuronal
SIRT1 activation as a novel mechanism underlying the prevention of
Alzheimer disease amyloid neuropathology by calorie restriction. J
Biol Chem. 281:21745–21754. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kim D, Nguyen MD, Dobbin MM, Fischer A,
Sananbenesi F, Rodgers JT, Delalle I, Baur JA, Sui G, Armour SM, et
al: SIRT1 deacetylase protects against neurodegeneration in models
for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J.
26:3169–3179. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Donmez G, Wang D, Cohen DE and Guarente L:
SIRT1 suppresses beta-amyloid production by activating the
alpha-secretase gene ADAM10. Cell. 142:320–332. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Jeong H, Cohen DE, Cui L, Supinski A,
Savas JN, Mazzulli JR, Yates JR III, Bordone L, Guarente L and
Krainc D: Sirt1 mediates neuroprotection from mutant huntingtin by
activation of the TORC1 and CREB transcriptional pathway. Nat Med.
18:159–165. 2012. View
Article : Google Scholar
|
31
|
Jiang M, Wang J, Fu J, Du L, Jeong H, West
T, Xiang L, Peng Q, Hou Z, Cai H, et al: Neuroprotective role of
Sirt1 in mammalian models of Huntington's disease through
activation of multiple Sirt1 targets. Nat Med. 18:153–158. 2011.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Donmez G, Arun A, Chung CY, McLean PJ,
Lindquist S and Guarente L: SIRT1 protects against α-synuclein
aggregation by activating molecular chaperones. J Neurosci.
32:124–132. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhu D, Zhang J, Wu J, Li G, Yao W, Hao J
and Sun J: Paliperidone protects SH-SY5Y cells against
MK-801-induced neuronal damage through inhibition of Ca(2+) influx
and regulation of SIRT1/miR-134 signal pathway. Mol Neurobiol.
53:2498–2509. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Yan W, Fang Z, Yang Q, Dong H, Lu Y, Lei C
and Xiong L: SirT1 mediates hyperbaric oxygen
preconditioning-induced ischemic tolerance in rat brain. J Cereb
Blood Flow Metab. 33:396–406. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Li Y, Xu S, Giles A, Nakamura K, Lee JW,
Hou X, Donmez G, Li J, Luo Z, Walsh K, et al: Hepatic
overexpression of SIRT1 in mice attenuates endoplasmic reticulum
stress and insulin resistance in the liver. FASEB J. 25:1664–1679.
2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Jung TW, Lee KT, Lee MW and Ka KH: SIRT1
attenuates palmitate-induced endoplasmic reticulum stress and
insulin resistance in HepG2 cells via induction of oxygen-regulated
protein 150. Biochem Biophys Res Commun. 422:229–232. 2012.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Kuszczyk M, Gordon-Krajcer W and
Lazarewicz JW: Homo-cysteine-induced acute excitotoxicity in
cerebellar granule cells in vitro is accompanied by PP2A-mediated
dephosphorylation of tau. Neurochem Int. 55:174–180. 2009.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Oldreive CE and Doherty GH: Neurotoxic
effects of homocysteine on cerebellar Purkinje neurons in vitro.
Neurosci Lett. 413:52–57. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lipton SA, Kim WK, Choi YB, Kumar S,
D'Emilia DM, Rayudu PV, Arnelle DR and Stamler JS: Neurotoxicity
associated with dual actions of homocysteine at the
N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA.
94:5923–5928. 1997. View Article : Google Scholar : PubMed/NCBI
|
40
|
Bhatia P and Singh N: Homocysteine excess:
Delineating the possible mechanism of neurotoxicity and depression.
Fundam Clin Pharmacol. 29:522–528. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ni M, Zhang Y and Lee AS: Beyond the
endoplasmic reticulum: Atypical GRP78 in cell viability, signalling
and therapeutic targeting. Biochem J. 434:181–188. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lee AS: The ER chaperone and signaling
regulator GRP78/BiP as a monitor of endoplasmic reticulum stress.
Methods. 35:373–381. 2005. View Article : Google Scholar : PubMed/NCBI
|
43
|
Szegezdi E, Fitzgerald U and Samali A:
Caspase-12 and ER-stress-mediated apoptosis: The story so far. Ann
N Y Acad Sci. 1010:186–194. 2003. View Article : Google Scholar : PubMed/NCBI
|
44
|
Nakagawa T, Zhu H, Morishima N, Li E, Xu
J, Yankner BA and Yuan J: Caspase-12 mediates
endoplasmic-reticulum-specific apoptosis and cytotoxicity by
amyloid-beta. Nature. 403:98–103. 2000. View Article : Google Scholar : PubMed/NCBI
|
45
|
de la Cadena SG, Hernandez-Fonseca K,
Camacho-Arroyo I and Massieu L: Glucose deprivation induces
reticulum stress by the PERK pathway and caspase-7- and
calpain-mediated caspase-12 activation. Apoptosis. 19:414–427.
2014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Wei H, Zhang R, Jin H, Liu D, Tang X, Tang
C and Du J: Hydrogen sulfide attenuates
hyperhomocysteinemia-induced cardiomyocytic endoplasmic reticulum
stress in rats. Antioxid Redox Signal. 12:1079–1091. 2010.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Li Y, Zhang H, Jiang C, Xu M, Pang Y, Feng
J, Xiang X, Kong W, Xu G, Li Y and Wang X: Hyperhomocysteinemia
promotes insulin resistance by inducing endoplasmic reticulum
stress in adipose tissue. J Biol Chem. 288:9583–9592. 2013.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Zbidi H, Redondo PC and López JJ, Bartegi
A, Salido GM and López JJ: Homocysteine induces caspase activation
by endoplasmic reticulum stress in platelets from type 2 diabetics
and healthy donors. Thromb Haemost. 103:1022–1032. 2010. View Article : Google Scholar : PubMed/NCBI
|
49
|
Park SJ, Kim KJ, Kim WU, Oh IH and Cho CS:
Involvement of endoplasmic reticulum stress in homocysteine-induced
apoptosis of osteoblastic cells. J Bone Miner Metab. 30:474–484.
2012. View Article : Google Scholar : PubMed/NCBI
|
50
|
Wang XY, Yang CT, Zheng DD, Mo LQ, Lan AP,
Yang ZL, Hu F, Chen PX, Liao XX and Feng JQ: Hydrogen sulfide
protects H9c2 cells against doxorubicin-induced cardiotoxicity
through inhibition of endoplasmic reticulum stress. Mol Cell
Biochem. 363:419–426. 2012. View Article : Google Scholar : PubMed/NCBI
|
51
|
Xie L, Tiong CX and Bian JS: Hydrogen
sulfide protects SH-SY5Y cells against 6-hydroxydopamine-induced
endoplasmic reticulum stress. Am J Physiol Cell Physiol.
303:C81–C91. 2012. View Article : Google Scholar : PubMed/NCBI
|
52
|
Canto C and Auwerx J: Caloric restriction,
SIRT1 and longevity. Trends Endocrinol Metab. 20:325–331. 2009.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Bordone L and Guarente L: Calorie
restriction, SIRT1 and metabolism: Understanding longevity. Nat Rev
Mol Cell Biol. 6:298–305. 2005. View Article : Google Scholar : PubMed/NCBI
|
54
|
Satoh A, Brace CS, Rensing N, Cliften P,
Wozniak DF, Herzog ED, Yamada KA and Imai S: Sirt1 extends life
span and delays aging in mice through the regulation of Nk2
homeobox 1 in the DMH and LH. Cell Metab. 18:416–430. 2013.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Tang BL: SIRT1, neuronal cell survival and
the insulin/IGF-1 aging paradox. Neurobiol Aging. 27:501–505. 2006.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Michan S and Sinclair D: Sirtuins in
mammals: Insights into their biological function. Biochem J.
404:1–13. 2007. View Article : Google Scholar : PubMed/NCBI
|
57
|
Brunet A, Sweeney LB, Sturgill JF, Chua
KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, et
al: Stress-dependent regulation of FOXO transcription factors by
the SIRT1 deacetylase. Science. 303:2011–2015. 2004. View Article : Google Scholar : PubMed/NCBI
|
58
|
Milner J: Cellular regulation of SIRT1.
Curr Pharm Des. 15:39–44. 2009. View Article : Google Scholar : PubMed/NCBI
|
59
|
Herskovits AZ and Guarente L: SIRT1 in
neurodevelopment and brain senescence. Neuron. 81:471–483. 2014.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Ghemrawi R, Pooya S, Lorentz S, Gauchotte
G, Arnold C, Gueant JL and Battaglia-Hsu SF: Decreased vitamin B12
availability induces ER stress through impaired SIRT1-deacetylation
of HSF1. Cell Death Dis. 4:e5532013. View Article : Google Scholar : PubMed/NCBI
|