1
|
Galiè N, Humbert M, Vachiery JL, Gibbs S,
Lang I, Torbicki A, Simonneau G, Peacock A, Noordegraaf A Vonk,
Beghetti M, et al: 2015 ESC/ERS Guidelines for the diagnosis and
treatment of pulmonary hypertension: The Joint Task Force for the
Diagnosis and Treatment of Pulmonary Hypertension of the European
Society of Cardiology (ESC) and the European Respiratory Society
(ERS): Endorsed by: Association for European Paediatric and
Congenital Cardiology (AEPC), International Society for Heart and
Lung Transplantation (ISHLT). Eur Heart J. 37:67–119. 2016.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Qiao S, Fan K, Iwashita T, Ichihara M,
Yoshino M and Takahashi M: The involvement of reactive oxygen
species derived from NADPH oxidase-1 activation on the constitutive
tyrosine auto-phosphorylation of RET proteins. Free Radic Res.
48:427–434. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Schermuly RT, Ghofrani HA, Wilkins MR and
Grimminger F: Mechanisms of disease: Pulmonary arterial
hypertension. Nat Rev Cardiol. 8:443–455. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Freund-Michel V, Guibert C, Dubois M,
Courtois A, Marthan R, Savineau JP and Muller B: Reactive oxygen
species as therapeutic targets in pulmonary hypertension. Ther Adv
Respir Dis. 7:175–200. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Veit F, Pak O, Egemnazarov B, Roth M,
Kosanovic D, Seimetz M, Sommer N, Ghofrani HA, Seeger W, Grimminger
F, et al: Function of NADPH oxidase 1 in pulmonary arterial smooth
muscle cells after monocrotaline-induced pulmonary vascular
remodeling. Antioxid Redox Signal. 19:2213–2231. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ismail S, Sturrock A, Wu P, Cahill B,
Norman K, Huecksteadt T, Sanders K, Kennedy T and Hoidal J: NOX4
mediates hypoxia-induced proliferation of human pulmonary artery
smooth muscle cells: The role of autocrine production of
transforming growth factor-{beta}1 and insulin-like growth factor
binding protein-3. Am J Physiol Lung Cell Mol Physiol.
296:L489–L499. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wassmann S, Wassmann K and Nickenig G:
Modulation of oxidant and antioxidant enzyme expression and
function in vascular cells. Hypertension. 44:381–386. 2004.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Millea PJ: N-acetylcysteine: Multiple
clinical applications. Am Fam Physician. 80:265–269.
2009.PubMed/NCBI
|
9
|
Kelly GS: Clinical applications of
N-acetylcysteine. Altern Med Rev. 3:114–127. 1998.PubMed/NCBI
|
10
|
Santus P, Corsico A, Solidoro P, Braido F,
Di Marco F and Scichilone N: Oxidative stress and respiratory
system: Pharmacological and clinical reappraisal of
N-acetylcysteine. COPD. 11:705–717. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chaumais MC, Ranchoux B, Montani D,
Dorfmüller P, Tu L, Lecerf F, Raymond N, Guignabert C, Price L,
Simonneau G, et al: N-acetylcysteine improves established
monocrotaline-induced pulmonary hypertension in rats. Respir Res.
15:652014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Veit F, Pak O, Brandes RP and Weissmann N:
Hypoxia-dependent reactive oxygen species signaling in the
pulmonary circulation: Focus on ion channels. Antioxid Redox
Signal. 22:537–552. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ahmad M, Kelly MR, Zhao X, Kandhi S and
Wolin MS: Roles for Nox4 in the contractile response of bovine
pulmonary arteries to hypoxia. Am J Physiol Heart Circ Physiol.
298:H1879–H1888. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Seta F, Rahmani M, Turner PV and Funk CD:
Pulmonary oxidative stress is increased in cyclooxygenase-2
knockdown mice with mild pulmonary hypertension induced by
monocrotaline. PLoS One. 6:e234392011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Briones AM and Touyz RM: Oxidative stress
and hypertension: Current concepts. Curr Hypertens Rep. 12:135–142.
2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Guzik TJ, Sadowski J, Guzik B, Jopek A,
Kapelak B, Przybylowski P, Wierzbicki K, Korbut R, Harrison DG and
Channon KM: Coronary artery superoxide production and nox isoform
expression in human coronary artery disease. Arterioscler Thromb
Vasc Biol. 26:333–339. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Cheng G and Lambeth JD: NOXO1, regulation
of lipid binding, localization, and activation of Nox1 by the Phox
homology (PX) domain. J Biol Chem. 279:4737–4742. 2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Helmcke I, Heumüller S, Tikkanen R,
Schröder K and Brandes RP: Identification of structural elements in
Nox1 and Nox4 controlling localization and activity. Antioxid Redox
Signal. 11:1279–1287. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Diebold I, Petry A, Hess J and Görlach A:
The NADPH oxidase subunit NOX4 is a new target gene of the
hypoxia-inducible factor-1. Mol Biol Cell. 21:2087–2096. 2010.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Judkins CP, Diep H, Broughton BR, Mast AE,
Hooker EU, Miller AA, Selemidis S, Dusting GJ, Sobey CG and
Drummond GR: Direct evidence of a role for Nox2 in superoxide
production, reduced nitric oxide bioavailability, and early
atherosclerotic plaque formation in ApoE-/-mice. Am J Physiol Heart
Circ Physiol. 298:H24–H32. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yin W and Voit EO: Function and design of
the Nox1 system in vascular smooth muscle cells. BMC Syst Biol.
7:202013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Valdivia A, Pérez-Alvarez S, Aroca-Aguilar
JD, Ikuta I and Jordán J: Superoxide dismutases: A
physiopharmacological update. J Physiol Biochem. 65:195–208. 2009.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Jaulmes A, Sansilvestri-Morel P,
Rolland-Valognes G, Bernhardt F, Gaertner R, Lockhart BP, Cordi A,
Wierzbicki M, Rupin A and Verbeuren TJ: Nox4 mediates the
expression of plasminogen activator inhibitor-1 via p38 MAPK
pathway in cultured human endothelial cells. Thromb Res.
124:439–446. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Anrather J, Racchumi G and Iadecola C:
NF-kappaB regulates phagocytic NADPH oxidase by inducing the
expression of gp91phox. J Biol Chem. 281:5657–5667. 2006.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Schröder E and Eaton P: Hydrogen peroxide
as an endogenous mediator and exogenous tool in cardiovascular
research: Issues and considerations. Curr Opin Pharmacol.
8:153–159. 2008. View Article : Google Scholar : PubMed/NCBI
|