1
|
Sibai B, Dekker G and Kupferminc M:
Pre-eclampsia. Lancet. 365:785–799. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hubel CA: Oxidative stress in the
pathogenesis of preeclampsia. Proc Soc Exp Biol Med. 222:222–235.
1999; View Article : Google Scholar : PubMed/NCBI
|
3
|
Redman CW and Sargent IL: Latest advances
in understanding preeclampsia. Science. 308:1592–1594. 2005.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Roberts JM and Hubel CA: Is oxidative
stress the link in the two-stage model of pre-eclampsia? Lancet.
354:788–789. 1999. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bonney EA: Demystifying animal models of
adverse pregnancy outcomes: Touching bench and bedside. Am J Reprod
Immunol. 69:567–584. 2013.PubMed/NCBI
|
6
|
Jukic AM, Weinberg CR, Wilcox AJ and Baird
DD: Effects of early pregnancy loss on hormone levels in the
subsequent menstrual cycle. Gynecol Endocrinol. 26:897–901. 2010.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Heldring N, Pike A, Andersson S, Matthews
J, Cheng G, Hartman J, Tujague M, Ström A, Treuter E, Warner M and
Gustafsson JA: Estrogen receptors: How do they signal and what are
their targets. Physiol Rev. 87:905–931. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Jobe SO, Tyler CT and Magness RR: Aberrant
synthesis, metabolism, and plasma accumulation of circulating
estrogens and estrogen metabolites in preeclampsia implications for
vascular dysfunction. Hypertension. 61:480–487. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tamimi R, Lagiou P, Vatten LJ, Mucci L,
Trichopoulos D, Hellerstein S, Ekbom A, Adami HO and Hsieh CC:
Pregnancy hormones, pre-eclampsia, and implications for breast
cancer risk in the offspring. Cancer Epidemiol Biomarkers Prev.
12:647–650. 2003.PubMed/NCBI
|
10
|
Zeisler H, Jirecek S, Hohlagschwandtner M,
Knöfler M, Tempfer C and Livingston JC: Concentrations of estrogens
in patients with preeclampsia. Wien Klin Wochenschr. 114:458–461.
2002.PubMed/NCBI
|
11
|
Hertig A, Liere P, Chabbert-Buffet N, Fort
J, Pianos A, Eychenne B, Cambourg A, Schumacher M, Berkane N,
Lefevre G, et al: Steroid profiling in preeclamptic women: Evidence
for aromatase deficiency. Am J Obstet Gynecol. 203:477.e1–e9. 2010.
View Article : Google Scholar
|
12
|
Lee SJ, Lee DW, Kim KS and Lee IK: Effect
of estrogen on endothelial dysfunction in postmenopausal women with
diabetes. Diabetes Res Clin Pract. 54 Suppl 2:S81–S92. 2001.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Maruyama A, Nakayama T, Sato N, Mizutani
Y, Furuya K and Yamamoto T: Association study using single
nucleotide polymorphisms in the estrogen receptor beta (ESR2) gene
for preeclampsia. Hypertens Res. 27:903–909. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Molvarec A, Vér A, Fekete A, Rosta K,
Derzbach L, Derzsy Z, Karádi I and Rigó J Jr: Association between
estrogen receptor alpha (ESR1) gene polymorphisms and severe
preeclampsia. Hypertens Res. 30:205–211. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kolkova Z, Noskova V, Ehinger A, Hansson S
and Casslén B: G protein-coupled estrogen receptor 1 (GPER, GPR 30)
in normal human endometrium and early pregnancy decidua. Mol Hum
Reprod. 16:743–751. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Revankar CM, Cimino DF, Sklar LA,
Arterburn JB and Prossnitz ER: A transmembrane intracellular
estrogen receptor mediates rapid cell signaling. Science.
307:1625–1630. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Thomas P, Pang Y, Filardo EJ and Dong J:
Identity of an estrogen membrane receptor coupled to a G protein in
human breast cancer cells. Endocrinology. 146:624–632. 2005.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Szego CM and Davis JS: Adenosine
3′,5′-monophosphate in rat uterus: Acute elevation by estrogen.
Proc Natl Acad Sci USA. 58:1711–1718. 1967; View Article : Google Scholar : PubMed/NCBI
|
19
|
Prossnitz ER, Arterburn JB and Sklar LA:
GPR30: A G protein-coupled receptor for estrogen. Mol Cell
Endocrinol 265–266. 1–142. 2007.
|
20
|
Kanda N and Watanabe S: 17beta-estradiol
inhibits oxidative stress-induced apoptosis in keratinocytes by
promoting Bcl-2 expression. J Invest Dermatol. 121:1500–1509. 2003.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Vivacqua A, Bonofiglio D, Recchia AG,
Musti AM, Picard D, Andò S and Maggiolini M: The G protein-coupled
receptor GPR30 mediates the proliferative effects induced by
17beta-estradiol and hydroxytamoxifen in endometrial cancer cells.
Mol Endocrinol. 20:631–646. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hung TH, Skepper JN, Charnock-Jones DS and
Burton GJ: Hypoxia-reoxygenation: A potent inducer of apoptotic
changes in the human placenta and possible etiological factor in
preeclampsia. Circ Res. 90:1274–1281. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
American College of Obstetricians and
Gynecologists; Task Force on Hypertension in Pregnancy:
Hypertension in pregnancy. report of the american college of
obstetricians and gynecologists' task force on hypertension in
pregnancy. Obstet Gynecol. 122:1122–1131. 2013.PubMed/NCBI
|
24
|
Prossnitz ER, Oprea TI, Sklar LA and
Arterburn JB: The ins and outs of GPR30: A transmembrane estrogen
receptor. J Steroid Biochem Mol Biol. 109:350–353. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Takada Y, Kato C, Kondo S, Korenaga R and
Ando J: Cloning of cDNAs encoding G protein-coupled receptor
expressed in human endothelial cells exposed to fluid shear stress.
Biochem Biophys Res Commun. 240:737–741. 1997. View Article : Google Scholar : PubMed/NCBI
|
26
|
Carmeci C, Thompson DA, Ring HZ, Francke U
and Weigel RJ: Identification of a gene (GPR30) with homology to
the G-protein-coupled receptor superfamily associated with estrogen
receptor expression in breast cancer. Genomics. 45:607–617. 1997.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Mårtensson UE, Salehi SA, Windahl S, Gomez
MF, Swärd K, Daszkiewicz-Nilsson J, Wendt A, Andersson N,
Hellstrand P, Grände PO, et al: Deletion of the G protein-coupled
receptor 30 impairs glucose tolerance, reduces bone growth,
increases blood pressure, and eliminates estradiol-stimulated
insulin release in female mice. Endocrinology. 150:687–698. 2009.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Kumar R, Balhuizen A, Amisten S, Lundquist
I and Salehi A: Insulinotropic and antidiabetic effects of
17β-estradiol and the GPR30 agonist G-1 on human pancreatic islets.
Endocrinology. 152:2568–2579. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hung TH and Burton GJ: Hypoxia and
reoxygenation: A possible mechanism for placental oxidative stress
in preeclampsia. Taiwan J Obstet Gynecol. 45:189–200. 2006.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Hung TH, Skepper JN and Burton GJ: In
vitro ischemia-reperfusion injury in term human placenta as a model
for oxidative stress in pathological pregnancies. Am J Pathol.
159:1031–1043. 2001. View Article : Google Scholar : PubMed/NCBI
|
31
|
Burton GJ, Hempstock J and Jauniaux E:
Oxygen, early embryonic metabolism and free radical-mediated
embryopathies. Reprod Biomed Online. 6:84–96. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Nelson DB, Ziadie MS, McIntire DD, Rogers
BB and Leveno KJ: Placental pathology suggesting that preeclampsia
is more than one disease. Am J Obstet Gynecol. 210:66.e1–e7. 2014.
View Article : Google Scholar
|
33
|
Stergiotou I, Crispi F, Valenzuela-Alcaraz
B, Bijnens B and Gratacos E: Patterns of maternal vascular
remodeling and responsiveness in early-versus late-onset
preeclampsia. Am J Obstet Gynecol. 209:558.e1–558.e14. 2013.
View Article : Google Scholar
|