1
|
Besler C, Lüscher TF and Landmesser U:
Molecular mechanisms of vascular effects of High-density
lipoprotein: Alterations in cardiovascular disease. EMBO Mol Med.
4:251–268. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Botham KM and Wheeler-Jones CP:
Postprandial lipoproteins and the molecular regulation of vascular
homeostasis. Prog Lipid Res. 52:446–464. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Libby P: Inflammation in atherosclerosis.
Nature. 420:868–874. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tall AR and Yvan-Charvet L: Cholesterol,
inflammation and innate immunity. Nat Rev Immunol. 15:104–116.
2015. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Liao KP and Solomon DH: Traditional
cardiovascular risk factors, inflammation and cardiovascular risk
in rheumatoid arthritis. Rheumatology (Oxford). 52:45–52. 2012.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Krishnan E: Inflammation, oxidative stress
and lipids: The risk triad for atherosclerosis in gout.
Rheumatology (Oxford). 49:1229–1238. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Manduteanu I and Simionescu M:
Inflammation in atherosclerosis: A cause or a result of vascular
disorders? J Cell Mol Med. 16:1978–1990. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zelová H and Hošek J: TNF-α signalling and
inflammation: Interactions between old acquaintances. Inflamm Res.
62:641–651. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhang Y, Yang X, Bian F, Wu P, Xing S, Xu
G, Li W, Chi J, Ouyang C, Zheng T, et al: TNF-α promotes early
atherosclerosis by increasing transcytosis of LDL across
endothelial cells: Crosstalk between NF-κB and PPAR-γ. J Mol Cell
Cardiol. 72:85–94. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ende G, Poitz DM, Augstein A, Wiedemann E,
Barthel P, Maennel A, Friedrichs J, Werner C, Strasser RH and
Jellinghaus S: TNF-α mediated monocyte adhesion: Role of ephrinA1
as potential link to atherosclerosis. Cardiovascular Res. 103
Suppl:S3–S5. 2014. View Article : Google Scholar
|
11
|
Chanet A, Milenkovic D, Claude S, Maier
JA, Khan M Kamran, Rakotomanomana N, Shinkaruk S, Bérard AM,
Bennetau-Pelissero C, Mazur A and Morand C: Flavanone metabolites
decrease monocyte adhesion to TNF-α-activated endothelial cells by
modulating expression of atherosclerosis-related genes. Br J Nutr.
110:587–598. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chen HW, Lin AH, Chu HC, Li CC, Tsai CW,
Chao CY, Wang CJ, Lii CK and Liu KL: Inhibition of TNF-α-Induced
Inflammation by andrographolide via down-regulation of the PI3K/Akt
signaling pathway. J Nat Prod. 74:2408–2413. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Umar S, Hedaya O, Singh AK and Ahmed S:
Thymoquinone inhibits TNF-α-induced inflammation and cell adhesion
in rheumatoid arthritis synovial fibroblasts by ASK1 regulation.
Toxicol Appl Pharmacol. 287:299–305. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Feig DI, Kang D and Johnson RJ: Uric Acid
and Cardiovascular Risk. N Engl J Med. 359:1811–1821. 2008.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Cicero AF, Salvi P, D'Addato S, Rosticci M
and Borghi C; Brisighella Heart Study group, : Association between
serum uric acid, hypertension, vascular stiffness and subclinical
atherosclerosis. J Hypertens. 32:57–64. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Shimizu Y, Sato S, Koyamatsu J, Yamanashi
H, Tamai M, Kadota K, Arima K, Yamasaki H, Takamura N, Aoyagi K and
Maeda T: Subclinical carotid atherosclerosis and hyperuricemia in
relation to renal impairment in a rural Japanese population: The
Nagasaki Islands study. Atherosclerosis. 233:525–529. 2014.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Corry DB, Eslami P, Yamamoto K, Nyby MD,
Makino H and Tuck ML: Uric acid stimulates vascular smooth muscle
cell proliferation and oxidative stress via the vascular
renin-angiotensin system. J Hypertens. 26:269–275. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Rao GN, Corson MA and Berk BC: Uric acid
stimulates vascular smooth muscle cell proliferation by increasing
platelet-derived growth factor A-chain expression. J Biol Chem.
266:8604–8608. 1991.PubMed/NCBI
|
19
|
Gasse P, Riteau N, Charron S, Girre S,
Fick L, Pétrilli V, Tschopp J, Lagente V, Quesniaux VF, Ryffel B
and Couillin I: Uric acid is a danger signal activating NALP3
inflammasome in lung injury inflammation and fibrosis. Am J Respir
Crit Care Med. 179:903–913. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Neumann K, Castiñeiras-Vilariño M,
Höckendorf U, Hannesschlager N, Lemeer S, Kupka D, Meyermann S,
Lech M, Anders HJ, Kuster B, et al: Clec12a is an inhibitory
receptor for uric acid crystals that regulates inflammation in
response to cell death. Immunity. 40:389–399. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wijnands JM, Boonen A, Dagnelie PC, van
Greevenbroek MM, Van Der Kallen CJ, Ferreira I, Schalkwijk CG,
Feskens EJ, Stehouwer CD, van der Linden S and Arts IC: The
cross-sectional association between uric acid and atherosclerosis
and the role of low-grade inflammation: The CODAM study.
Rheumatology (Oxford). 53:2053–2062. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kang DH, Park SK, Lee IK and Johnson RJ:
Uric acid-induced C-reactive protein expression: Implication on
cell proliferation and nitric oxide production of human vascular
cells. J Am Soc Nephrol. 16:3553–3562. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ramos K and Cox LR: Primary cultures of
rat aortic endothelial and smooth muscle cells: I. An in vitro
model to study xenobiotic-induced vascular cytotoxicity. In Vitro
Cell Dev Biol. 23:288–296. 1987. View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Xu ZR, Li JY, Dong XW, Tan ZJ, Wu WZ, Xie
QM and Yang YM: Apple polyphenols decrease atherosclerosis and
hepatic steatosis in apoE-/- mice through the ROS/MAPK/NF-κB
pathway. Nutrients. 7:7085–7105. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Pamukcu B, Lip GY and Shantsila E: The
nuclear factor-kappa B pathway in atherosclerosis: A potential
therapeutic target for atherothrombotic vascular disease. Thromb
Res. 128:117–123. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Rodrigues TC, Maahs DM, Johnson RJ, Jalal
DI, Kinney GL, Rivard C, Rewers M and Snell-Bergeon JK: Serum Uric
acid predicts progression of subclinical coronary atherosclerosis
in individuals without renal disease. Diabetes Care. 33:2471–2473.
2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kim SY, Guevara JP, Kim KM, Choi HK,
Heitjan DF and Albert DA: Hyperuricemia and risk of stroke: A
systematic review and meta-analysis. Arthritis Rheum. 61:885–892.
2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chen H, Mosley TH, Alonso A and Huang X:
Plasma Urate and Parkinson's Disease in the Atherosclerosis Risk in
Communities (ARIC) Study. Am J Epidemiol. 169:1064–1069. 2009.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang H, Jacobs DR Jr, Gaffo AL, Gross MD,
Goff DC Jr and Carr JJ: Longitudinal association between serum
urate and subclinical atherosclerosis: The Coronary Artery Risk
Development in Young Adults (CARDIA) study. J Intern Med.
274:594–609. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Viazzi F, Parodi D, Leoncini G, Parodi A,
Falqui V, Ratto E, Vettoretti S, Bezante GP, Del Sette M, Deferrari
G and Pontremoli R: Serum uric acid and target organ damage in
primary hypertension. Hypertension. 45:991–996. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Soletsky B and Feig DI: Uric acid
reduction rectifies prehypertension in obese adolescents.
Hypertension. 60:1148–1156. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Mellen PB, Bleyer AJ, Erlinger TP, Evans
GW, Nieto FJ, Wagenknecht LE, Wofford MR and Herrington DM: Serum
uric acid predicts incident hypertension in a biethnic cohort: The
atherosclerosis risk in communities study. Hypertension.
48:1037–1042. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Waring WS, McKnight JA, Webb DJ and
Maxwell SR: Lowering serum urate does not improve endothelial
function in patients with type 2 diabetes. Diabetologia.
50:2572–2579. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Bagheri B, Zargari M, Meshkini F,
Dinarvand K, Mokhberi V, Azizi S and Rasouli M: Uric acid and
coronary artery disease, two sides of a single coin: A determinant
of antioxidant system or a factor in metabolic syndrome. J Clin
Diagn Res. 10:OC27–OC31. 2016.PubMed/NCBI
|
36
|
Zhang JX, Zhang YP, Wu QN and Chen B: Uric
acid induces oxidative stress via an activation of the
renin-angiotensin system in 3T3-L1 adipocytes. Endocrine.
48:135–142. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhang X, Liu J, Pang X, Zhao J, Wang S and
Wu D: Aldosterone induces C-reactive protein expression via
MR-ROS-MAPK-NF-κB signal pathway in rat vascular smooth muscle
cells. Mol Cell Endocrinol. 395:61–68. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Han C, Liu J, Liu X and Li M: Angiotensin
II induces C-reactive protein expression through ERK1/2 and JNK
signaling in human aortic endothelial cells. Atherosclerosis.
212:206–212. 2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Pang X, Liu J, Zhao J, Mao J, Zhang X,
Feng L, Han C, Li M, Wang S and Wu D: Homocysteine induces the
expression of C-reactive protein via NMDAr-ROS-MAPK-NF-κB signal
pathway in rat vascular smooth muscle cells. Atherosclerosis.
236:73–81. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Leyva F, Anker SD, Godsland IF, Teixeira
M, Hellewell PG, Kox WJ, Poole-Wilson PA and Coats AJ: Uric acid in
chronic heart failure: A marker of chronic inflammation. Eur Heart
J. 19:1814–1822. 1998. View Article : Google Scholar : PubMed/NCBI
|