Thymic function in the regulation of T cells, and molecular mechanisms underlying the modulation of cytokines and stress signaling (Review)
- Authors:
- Fenggen Yan
- Xiumei Mo
- Junfeng Liu
- Siqi Ye
- Xing Zeng
- Dacan Chen
-
Affiliations: Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China - Published online on: September 19, 2017 https://doi.org/10.3892/mmr.2017.7525
- Pages: 7175-7184
-
Copyright: © Yan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Gordon J and Manley NR: Mechanisms of thymus organogenesis and morphogenesis. Development. 138:3865–3878. 2011. View Article : Google Scholar : PubMed/NCBI | |
Blackburn CC and Manley NR: Developing a new paradigm for thymus organogenesis. Nat Rev Immunol. 4:278–289. 2004. View Article : Google Scholar : PubMed/NCBI | |
Skogberg G, Lundberg V, Berglund M, Gudmundsdottir J, Telemo E, Lindgren S and Ekwall O: Human thymic epithelial primary cells produce exosomes carrying tissue-restricted antigens. Immunol Cell Biol. 93:727–734. 2015. View Article : Google Scholar : PubMed/NCBI | |
Anderson G and Jenkinson EJ: Lymphostromal interactions in thymic development and function. Nat Rev Immunol. 1:31–40. 2001. View Article : Google Scholar : PubMed/NCBI | |
Su M, Hu R, Jin J, Yan Y, Song Y, Sullivan R and Lai L: Efficient in vitro generation of functional thymic epithelial progenitors from human embryonic stem cells. Sci Rep. 5:98822015. View Article : Google Scholar : PubMed/NCBI | |
Fan Y, Tajima A, Goh SK, Geng X, Gualtierotti G, Grupillo M, Coppola A, Bertera S, Rudert WA, Banerjee I, et al: Bioengineering thymus organoids to restore thymic function and induce donor-specific immune tolerance to allografts. Mol Ther. 23:1262–1277. 2015. View Article : Google Scholar : PubMed/NCBI | |
van Ewijk W, Wang B, Hollander G, Kawamoto H, Spanopoulou E, Itoi M, Amagai T, Jiang YF, Germeraad WT, Chen WF and Katsura Y: Thymic microenvironments, 3-D versus 2-D? Semin Immunol. 11:57–64. 1999. View Article : Google Scholar : PubMed/NCBI | |
Nishizuka Y and Sakakura T: Thymus and reproduction: Sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science. 166:753–755. 1969. View Article : Google Scholar : PubMed/NCBI | |
Josefowicz SZ, Lu LF and Rudensky AY: Regulatory T cells: Mechanisms of differentiation and function. Annu Rev Immunol. 30:531–564. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hsieh CS, Lee HM and Lio CW: Selection of regulatory T cells in the thymus. Nat Rev Immunol. 12:157–167. 2012.PubMed/NCBI | |
Wang YM, Ghali J, Zhang GY, Hu M, Wang Y, Sawyer A, Zhou JJ, Hapudeniya DA, Wang Y, Cao Q, et al: Development and function of Foxp3(+) regulatory T cells. Nephrology (Carlton). 21:81–85. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lahl K, Loddenkemper C, Drouin C, Freyer J, Arnason J, Eberl G, Hamann A, Wagner H, Huehn J and Sparwasser T: Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med. 204:57–63. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kim JM, Rasmussen JP and Rudensky AY: Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol. 8:191–197. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rosalia RA, Štěpánek I, Polláková V, Šímová J, Bieblová J, Indrová M, Moravcová S, Přibylová H, Bontkes HJ, Bubeník J, et al: Administration of anti-CD25 mAb leads to impaired α-galactosylceramide-mediated induction of IFN-γ production in a murine model. Immunobiology. 218:851–859. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wong J, Obst R, Correia-Neves M, Losyev G, Mathis D and Benoist C: Adaptation of TCR repertoires to self-peptides in regulatory and nonregulatory CD4+ T cells. J Immunol. 178:7032–7041. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pacholczyk R, Ignatowicz H, Kraj P and Ignatowicz L: Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells. Immunity. 25:249–259. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hsieh CS, Liang Y, Tyznik AJ, Self SG, Liggitt D and Rudensky AY: Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity. 21:267–277. 2004. View Article : Google Scholar : PubMed/NCBI | |
Maloy KJ and Powrie F: Regulatory T cells in the control of immune pathology. Nat Immunol. 2:816–822. 2001. View Article : Google Scholar : PubMed/NCBI | |
Klein L, Kyewski B, Allen PM and Hogquist KA: Positive and negative selection of the T cell repertoire: What thymocytes see (and don't see). Nat Rev Immunol. 14:377–391. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chapman NM and Chi H: mTOR links environmental signals to T cell fate decisions. Front Immunol. 5:6862015. View Article : Google Scholar : PubMed/NCBI | |
Akimzhanov AM and Boehning D: IP3R function in cells of the immune system. WIREs Membr Transp Signal. 1:329–339. 2012. View Article : Google Scholar | |
Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O'Connor E, et al: T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci USA. 105:7797–7802. 2008; View Article : Google Scholar : PubMed/NCBI | |
Schwarz A, Schumacher M, Pfaff D, Schumacher K, Jarius S, Balint B, Wiendl H, Haas J and Wildemann B: Fine-tuning of regulatory T cell function: The role of calcium signals and naive regulatory T cells for regulatory T cell deficiency in multiple sclerosis. J Immunol. 190:4965–4970. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Yang L, Silva HM, Trzeciak A, Choi Y, Schwab SR, Dustin ML and Lafaille JJ: Increased generation of Foxp3(+) regulatory T cells by manipulating antigen presentation in the thymus. Nat Commun. 7:105622016. View Article : Google Scholar : PubMed/NCBI | |
Engel M, Sidwell T, Vasanthakumar A, Grigoriadis G and Banerjee A: Thymic regulatory T cell development: Role of signalling pathways and transcription factors. Clin Dev Immunol. 2013:6175952013. View Article : Google Scholar : PubMed/NCBI | |
Ouyang W, Beckett O, Ma Q, Paik Jh, DePinho RA and Li MO: Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat Immunol. 11:618–627. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kerdiles YM, Stone EL, Beisner DL, McGargill MA, Ch'en IL, Stockmann C, Katayama CD and Hedrick SM: Foxo transcription factors control regulatory T cell development and function. Immunity. 33:890–904. 2010. View Article : Google Scholar : PubMed/NCBI | |
Harada Y, Harada Y, Elly C, Ying G, Paik JH, DePinho RA and Liu YC: Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J Exp Med. 207:1381–1391. 2010. View Article : Google Scholar : PubMed/NCBI | |
Haribhai D, Williams JB, Jia S, Nickerson D, Schmitt EG, Edwards B, Ziegelbauer J, Yassai M, Li SH, Relland LM, et al: A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity. 35:109–122. 2011. View Article : Google Scholar : PubMed/NCBI | |
Omenetti S and Pizarro TT: The Treg/Th17 axis: A dynamic balance regulated by the gut microbiome. Front Immunol. 6:6392015. View Article : Google Scholar : PubMed/NCBI | |
Nitta T and Suzuki H: Thymic stromal cell subsets for T cell development. Cell Mol Life Sci. 73:1021–1037. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yarilin AA and Belyakov IM: Cytokines in the thymus: Production and biological effects. Curr Med Chem. 11:447–464. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shitara S, Hara T, Liang B, Wagatsuma K, Zuklys S, Holländer GA, Nakase H, Chiba T, Tani-ichi S and Ikuta K: IL-7 produced by thymic epithelial cells plays a major role in the development of thymocytes and TCRγδ+ intraepithelial lymphocytes. J Immunol. 190:6173–6179. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tian T, Zhang J, Gao L, Qian XP and Chen WF: Heterogeneity within medullary-type TCRalphabeta(+)CD3(+)CD4(−)CD8(+) thymocytes in normal mouse thymus. Int Immunol. 13:313–320. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chemin K, Bohineust A, Dogniaux S, Tourret M, Guégan S, Miro F and Hivroz C: Cytokine secretion by CD4+ T cells at the immunological synapse requires Cdc42-dependent local actin remodeling but not microtubule organizing center polarity. J Immunol. 189:2159–2168. 2012. View Article : Google Scholar : PubMed/NCBI | |
Coto JA, Hadden EM, Sauro M, Zorn N and Hadden JW: Interleukin 1 regulates secretion of zinc-thymulin by human thymic epithelial cells and its action on T-lymphocyte proliferation and nuclear protein kinase C. Proc Natl Acad Sci USA. 89:7752–7756. 1992; View Article : Google Scholar : PubMed/NCBI | |
Dalloul A, Arock M, Fourcade C, Hatzfeld A, Bertho JM, Debré P and Mossalayi MD: Human thymic epithelial cells produce interleukin-3. Blood. 77:69–74. 1991.PubMed/NCBI | |
Galy AH, Dinarello CA, Kupper TS, Kameda A and Hadden JW: Effects of cytokines on human thymic epithelial cells in culture. II. Recombinant IL 1 stimulates thymic epithelial cells to produce IL6 and GM-CSF. Cell Immunol. 129:161–175. 1990. View Article : Google Scholar : PubMed/NCBI | |
Savino W, Mendes-da-Cruz DA, Lepletier A and Dardenne M: Hormonal control of T-cell development in health and disease. Nat Rev Endocrinol. 12:77–89. 2016.PubMed/NCBI | |
Savino W and Dardenne M: Neuroendocrine control of thymus physiology. Endocr Rev. 21:412–443. 2000. View Article : Google Scholar : PubMed/NCBI | |
Muegge K, Vila MP and Durum SK: Interleukin-7: A cofactor for V(D)J rearrangement of the T cell receptor beta gene. Science. 261:93–95. 1993. View Article : Google Scholar : PubMed/NCBI | |
Bayer AL, Yu A and Malek TR: Function of the IL-2R for thymic and peripheral CD4+CD25+ Foxp3+ T regulatory cells. J Immunol. 178:4062–4071. 2007. View Article : Google Scholar : PubMed/NCBI | |
Varas A, Vicente A, Romo T and Zapata AG: Role of IL-2 in rat fetal thymocyte development. Int Immunol. 9:1589–1599. 1997. View Article : Google Scholar : PubMed/NCBI | |
Weist BM, Kurd N, Boussier J, Chan SW and Robey EA: Thymic regulatory T cell niche size is dictated by limiting IL-2 from antigen-bearing dendritic cells and feedback competition. Nat Immunol. 16:635–641. 2015. View Article : Google Scholar : PubMed/NCBI | |
Meilin A, Sharabi Y and Shoham J: Analysis of thymic stromal cell subpopulations grown in vitro on extracellular matrix in defined medium-v. Proliferation regulating activities in supernatants of human thymic epithelial cell cultures. Int J Immunopharmacol. 19:39–47. 1997. View Article : Google Scholar : PubMed/NCBI | |
Zlotnik A, Ransom J, Frank G, Fischer M and Howard M: Interleukin 4 is a growth factor for activated thymocytes: Possible role in T-cell ontogeny. Proc Natl Acad Sci USA. 84:3856–3860. 1987; View Article : Google Scholar : PubMed/NCBI | |
Shevach EM: Mechanisms of Foxp3+ T regulatory cell-mediated suppression. Immunity. 30:636–645. 2009. View Article : Google Scholar : PubMed/NCBI | |
Barnes MJ and Powrie F: Regulatory T cells reinforce intestinal homeostasis. Immunity. 31:401–411. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mittal SK and Roche PA: Suppression of antigen presentation by IL-10. Curr Opin Immunol. 34:22–27. 2015. View Article : Google Scholar : PubMed/NCBI | |
Patel DD, Whichard LP, Radcliff G, Denning SM and Haynes BF: Characterization of human thymic epithelial cell surface antigens: phenotypic similarity of thymic epithelial cells to epidermal keratinocytes. J Clin Immunol. 15:80–92. 1995. View Article : Google Scholar : PubMed/NCBI | |
Meilin A, Shoham J, Schreiber L and Sharabi Y: The role of thymocytes in regulating thymic epithelial cell growth and function. Scand J Immunol. 42:185–190. 1995. View Article : Google Scholar : PubMed/NCBI | |
Baseta JG and Stutman O: TNF regulates thymocyte production by apoptosis and proliferation of the triple negative (CD3-CD4-CD8-) subset. J Immunol. 165:5621–5630. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zúñiga-Pflücker JC, Jiang D and Lenardo MJ: Requirement for TNF-alpha and IL-1 alpha in fetal thymocyte commitment and differentiation. Science. 268:1906–1909. 1995. View Article : Google Scholar : PubMed/NCBI | |
Arzt E, Kovalovsky D, Igaz LM, Costas M, Plazas P, Refojo D, Páez-Pereda M, Reul JM, Stalla G and Holsboer F: Functional cross-talk among cytokines, T-cell receptor, and glucocorticoid receptor transcriptional activity and action. Ann NY Acad Sci. 917:672–677. 2000. View Article : Google Scholar : PubMed/NCBI | |
Cohen-Kaminsky S, Delattre RM, Devergne O, Rouet P, Gimond D, Berrih-Aknin S and Galanaud P: Synergistic induction of interleukin-6 production and gene expression in human thymic epithelial cells by LPS and cytokines. Cell Immunol. 138:79–93. 1991. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhuo Y, Yin L, Wang H, Jiang Y, Liu X, Zhang M, Du F, Xia S and Shao Q: Doxycycline protects thymic epithelial cells from mitomycin C-mediated apoptosis in vitro via Trx2-NF-κB-Bcl-2/Bax axis. Cell Physiol Biochem. 38:449–460. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shanley DP, Aw D, Manley NR and Palmer DB: An evolutionary perspective on the mechanisms of immunosenescence. Trends Immunol. 30:374–381. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dooley J and Liston A: Molecular control over thymic involution: From cytokines and microRNA to aging and adipose tissue. Eur J Immunol. 42:1073–1079. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kappler JW, Roehm N and Marrack P: T cell tolerance by clonal elimination in the thymus. Cell. 49:273–280. 1987. View Article : Google Scholar : PubMed/NCBI | |
Xing Y and Hogquist KA: T-Cell tolerance: Central and peripheral. Cold Spring Harb Perspect Biol. 4(pii): a0069572012.PubMed/NCBI | |
Roberts JL, Sharrow SO and Singer A: Clonal deletion and clonal anergy in the thymus induced by cellular elements with different radiation sensitivities. J Exp Med. 171:935–940. 1990. View Article : Google Scholar : PubMed/NCBI | |
Kisielow P, Bluthmann H, Staerz UD, Steinmetz M and von Boehmer H: Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature. 333:742–746. 1988. View Article : Google Scholar : PubMed/NCBI | |
Ramsdell F and Fowlkes B: Clonal deletion versus clonal anergy: The role of the thymus in inducing self tolerance. Science. 248:1342–1348. 1990. View Article : Google Scholar : PubMed/NCBI | |
Nurieva R, Wang J and Sahoo A: T-cell tolerance in cancer. Immunotherapy. 5:513–531. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xing Y and Hogquist KA: T-cell tolerance: Central and peripheral. Cold Spring Harb Perspect Biol. 4(pii): a0069572012.PubMed/NCBI | |
Wood KJ and Sakaguchi S: Regulatory T cells in transplantation tolerance. Nat Rev Immunol. 3:199–210. 2003. View Article : Google Scholar : PubMed/NCBI | |
Howard JK, Lord GM, Matarese G, Vendetti S, Ghatei MA, Ritter MA, Lechler RI and Bloom SR: Leptin protects mice from starvation-induced lymphoid atrophy and increases thymic cellularity in ob/ob mice. J Clin Invest. 104:1051–1059. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wang SD, Huang KJ, Lin YS and Lei HY: Sepsis-induced apoptosis of the thymocytes in mice. J Immunol. 152:5014–5021. 1994.PubMed/NCBI | |
Müller-Hermelink HK, Sale GE, Borisch B and Storb R: Pathology of the thymus after allogeneic bone marrow transplantation in man. A histologic immunohistochemical study of 36 patients. Am J Pathol. 129:242–256. 1987.PubMed/NCBI | |
Gruver AL and Sempowski GD: Cytokines, leptin, and stress-induced thymic atrophy. J Leukoc Biol. 84:915–923. 2008. View Article : Google Scholar : PubMed/NCBI | |
Boyd E: The weight of the thymus gland in health and disease. Am J Dis Child. 43:1162–1214. 1932. | |
Gruver AL, Hudson LL and Sempowski GD: Immunosenescence of ageing. J Pathol. 211:144–156. 2007. View Article : Google Scholar : PubMed/NCBI | |
Aw D, Silva AB and Palmer DB: Immunosenescence: Emerging challenges for an ageing population. Immunology. 120:435–446. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fülöp T, Larbi A and Pawelec G: Human T cell aging and the impact of persistent viral infections. Front Immunol. 4:2712013. View Article : Google Scholar : PubMed/NCBI | |
Gruver AL, Ventevogel MS and Sempowski GD: Leptin receptor is expressed in thymus medulla and leptin protects against thymic remodeling during endotoxemia-induced thymus involution. J Endocrinol. 203:75–85. 2009. View Article : Google Scholar : PubMed/NCBI | |
Haynes BF, Markert ML, Sempowski GD, Patel DD and Hale LP: The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Annu Rev Immunol. 18:529–560. 2000. View Article : Google Scholar : PubMed/NCBI | |
Billard MJ, Gruver AL and Sempowski GD: Acute endotoxin-induced thymic atrophy is characterized by intrathymic inflammatory and wound healing responses. PLoS One. 6:e179402011. View Article : Google Scholar : PubMed/NCBI | |
Hick RW, Gruver AL, Ventevogel MS, Haynes BF and Sempowski GD: Leptin selectively augments thymopoiesis in leptin deficiency and lipopolysaccharide-induced thymic atrophy. J Immunol. 177:169–176. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhou YJ, Peng H, Chen Y and Liu YL: Alterations of thymic epithelial cells in lipopolysaccharide-induced neonatal thymus involution. Chin Med J (Engl). 129:59–65. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ann V Griffith, Venables T, Shi J, Farr A, van Remmen H, Szweda L, Fallahi M, Rabinovitch P and Petrie HT: Metabolic damage and premature thymus aging caused by stromal catalase deficiency. Cell Rep. 12:1071–1079. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dorshkind K, Montecino-Rodriguez E and Signer RA: The ageing immune system: Is it ever too old to become young again? Nat Rev Immunol. 9:57–62. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gomez CR, Nomellini V, Faunce DE and Kovacs EJ: Innate immunity and aging. Exp Gerontol. 43:718–728. 2008. View Article : Google Scholar : PubMed/NCBI | |
Min D, Panoskaltsis-Mortari A, Kuro-o M, Holländer GA, Blazar BR and Weinberg KI: Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging. Blood. 109:2529–2537. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rossi SW, Jeker LT, Ueno T, Kuse S, Keller MP, Zuklys S, Gudkov AV, Takahama Y, Krenger W, Blazar BR and Holländer GA: Keratinocyte growth factor (KGF) enhances postnatal T-cell development via enhancements in proliferation and function of thymic epithelial cells. Blood. 109:3803–3811. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hsu HC, Zhang HG, Li L, Yi N, Yang PA, Wu Q, Zhou J, Sun S, Xu X, Yang X, et al: Age-related thymic involution in C57BL/6J × DBA/2J recombinant-inbred mice maps to mouse chromosomes 9 and 10. Genes Immun. 4:402–410. 2003. View Article : Google Scholar : PubMed/NCBI | |
Frawley R, White K Jr, Brown R, Musgrove D, Walker N and Germolec D: Gene expression alterations in immune system pathways in the thymus after exposure to immunosuppressive chemicals. Environ Health Perspect. 119:371–376. 2010. View Article : Google Scholar : PubMed/NCBI | |
Boehm T and Swann JB: Thymus involution and regeneration: Two sides of the same coin? Nat Rev Immunol. 13:831–838. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bluth MH, Kohlhoff S, Norowitz KB, Silverberg JI, Chice S, Nowakowski M, Durkin HG and Smith-Norowitz TA: Immune responses in autoimmune hepatitis: Effect of prednisone and azathioprine treatment: Case report. Int J Med Sci. 6:177–183. 2009. View Article : Google Scholar : PubMed/NCBI | |
Marchetti MC, Marco BD, Santini MC, Bartoli A, Delfino DV and Riccardi C: Dexamethasone-induced thymocytes apoptosis requires glucocorticoid receptor nuclear translocation but not mitochondrial membrane potential transition. Toxicol Lett. 139:175–180. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gould KA, Shull JD and Gorski J: DES action in the thymus: Inhibition of cell proliferation and genetic variation. Mol Cell Endocrinol. 170:31–39. 2000. View Article : Google Scholar : PubMed/NCBI | |
Fletcher AL, Lowen TE, Sakkal S, Reiseger JJ, Hammett MV, Seach N, Scott HS, Boyd RL and Chidgey AP: Ablation and regeneration of tolerance-inducing medullary thymic epithelial cells after cyclosporine, cyclophosphamide, and dexamethasone treatment. J Immunol. 183:823–831. 2009. View Article : Google Scholar : PubMed/NCBI | |
Camacho IA, Singh N, Hegde VL, Nagarkatti M and Nagarkatti PS: Treatment of mice with 2,3,7,8-tetrachlorodibenzo-p-dioxin leads to aryl hydrocarbon receptor-dependent nuclear translocation of NF-kappaB and expression of Fas ligand in thymic stromal cells and consequent apoptosis in T cells. J Immunol. 175:90–103. 2005. View Article : Google Scholar : PubMed/NCBI | |
Dudakov JA, Hanash AM, Jenq RR, Young LF, Ghosh A, Singer NV, West ML, Smith OM, Holland AM, Tsai JJ, et al: Interleukin-22 drives endogenous thymic regeneration in mice. Science. 336:91–95. 2012. View Article : Google Scholar : PubMed/NCBI | |
Larance M and Lamond AI: Multidimensional proteomics for cell biology. Nat Rev Mol Cell Biol. 16:269–280. 2015. View Article : Google Scholar : PubMed/NCBI | |
Leung EL, Cao ZW, Jiang ZH, Zhou H and Liu L: Network-based drug discovery by integrating systems biology and computational technologies. Brief Bioinform. 14:491–505. 2013. View Article : Google Scholar : PubMed/NCBI | |
Turiák L, Misják P, Szabó TG, Aradi B, Pálóczi K, Ozohanics O, Drahos L, Kittel A, Falus A, Buzás EI and Vékey K: Proteomic characterization of thymocyte-derived microvesicles and apoptotic bodies in BALB/c mice. J Proteomics. 74:2025–2033. 2011. View Article : Google Scholar : PubMed/NCBI | |
Billing AM, Revets D, Hoffmann C, Turner JD, Vernocchi S and Muller CP: Proteomic profiling of rapid non-genomic and concomitant genomic effects of acute restraint stress on rat thymocytes. J Proteomics. 75:2064–2079. 2012. View Article : Google Scholar : PubMed/NCBI | |
Schulze WX and Usadel B: Quantitation in mass-spectrometry-based proteomics. Annu Rev Plant Biol. 61:491–516. 2010. View Article : Google Scholar : PubMed/NCBI | |
Matt P, Fu Z, Fu Q and Van Eyk JE: Biomarker discovery: Proteome fractionation and separation in biological samples. Physiol Genomics. 33:12–17. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sultana R, Di Domenico F, Tseng M, Cai J, Noel T, Chelvarajan RL, Pierce WD, Cini C, Bondada S, St Clair DK and Butterfield DA: Doxorubicin-induced thymus senescence. J Proteome Res. 9:6232–6241. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ma C, Yue QX, Guan SH, Wu WY, Yang M, Jiang BH, Liu X and Guo DA: Proteomic analysis of possible target-related proteins of cyclophosphamide in mice thymus. Food Chem Toxicol. 47:1841–1847. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kawakami T, Nagata T, Muraguchi A and Nishimura T: Proteomic approach to apoptotic thymus maturation. J Chromatogr B Analyt Technol Biomed Life Sci. 787:223–229. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tyanova S, Albrechtsen R, Kronqvist P, Cox J, Mann M and Geiger T: Proteomic maps of breast cancer subtypes. Nat Commun. 7:102592016. View Article : Google Scholar : PubMed/NCBI | |
Chan PP, Wasinger VC and Leong RW: Current application of proteomics in biomarker discovery for inflammatory bowel disease. World J Gastrointest Pathophysiol. 7:27–37. 2016. View Article : Google Scholar : PubMed/NCBI | |
Peng F, Zhan X, Li MY, Fang F, Li G, Li C, Zhang PF and Chen Z: Proteomic and bioinformatics analyses of mouse liver microsomes. Int J Proteomics. 2012:8325692012. View Article : Google Scholar : PubMed/NCBI | |
Goh WW, Lee YH, Chung M and Wong L: How advancement in biological network analysis methods empowers proteomics. Proteomics. 12:550–563. 2012. View Article : Google Scholar : PubMed/NCBI | |
Miller JF: Immunological function of the thymus. Lancet. 2:748–749. 1961. View Article : Google Scholar : PubMed/NCBI | |
Burns JC and Franco A: The immunomodulatory effects of intravenous immunoglobulin therapy in Kawasaki disease. Expert Rev Clin Immunol. 11:819–825. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shankar-Hari M, Spencer J, Sewell WA, Rowan KM and Singer M: Bench-to-bedside review: Immunoglobulin therapy for sepsis - biological plausibility from a critical care perspective. Crit Care. 16:2062012. View Article : Google Scholar : PubMed/NCBI | |
Gupta M, Noel GJ, Schaefer M, Friedman D, Bussel J and Johann-Liang R: Cytokine modulation with immune gamma-globulin in peripheral blood of normal children and its implications in Kawasaki disease treatment. J Clin Immunol. 21:193–199. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chaudhry MS, Velardi E, Malard F and van den Brink MR: Immune reconstitution after allogeneic hematopoietic stem cell transplantation: Time to T Up the thymus. J Immunol. 198:40–46. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhu YX, Kortuem KM and Stewart AK: Molecular mechanism of action of immune-modulatory drugs thalidomide, lenalidomide and pomalidomide in multiple myeloma. Leuk Lymphoma. 54:683–687. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ekins S, Gupta RR, Gifford E, Bunin BA and Waller CL: Chemical space: Missing pieces in cheminformatics. Pharm Res. 27:2035–2039. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dobson CM: Chemical space and biology. Nature. 432:824–828. 2004. View Article : Google Scholar : PubMed/NCBI |