1
|
Wang JC and Bennett M: Aging and
atherosclerosis: Mechanisms, functional consequences, and potential
therapeutics for cellular senescence. Circ Res. 111:245–259. 2012.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Childs BG, Durik M, Baker DJ and van
Deursen JM: Cellular senescence in aging and age-related disease:
From mechanisms to therapy. Nat Med. 21:1424–1435. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Dimri GP, Lee X, Basile G, Acosta M, Scott
G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O,
et al: A biomarker that identifies senescent human cells in culture
and in aging skin in vivo. Proc Natl Acad Sci USA. 92:9363–9367.
1995; View Article : Google Scholar : PubMed/NCBI
|
4
|
Kunieda T, Minamino T, Nishi J, Tateno K,
Oyama T, Katsuno T, Miyauchi H, Orimo M, Okada S, Takamura M, et
al: Angiotensin II induces premature senescence of vascular smooth
muscle cells and accelerates the development of atherosclerosis via
a p21-dependent pathway. Circulation. 114:953–960. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wiley CD, Velarde MC, Lecot P, Liu S,
Sarnoski EA, Freund A, Shirakawa K, Lim HW, Davis SS, Ramanathan A,
et al: Mitochondrial dysfunction induces senescence with a distinct
secretory phenotype. Cell Metab. 23:303–314. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Correia-Melo C, Hewitt G and Passos JF:
Telomeres, oxidative stress and inflammatory factors: Partners in
cellular senescence? Longev Healthspan. 3:12014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Herbert KE, Mistry Y, Hastings R, Poolman
T, Niklason L and Williams B: Angiotensin II-mediated oxidative DNA
damage accelerates cellular senescence in cultured human vascular
smooth muscle cells via telomere-dependent and independent
pathways. Circ Res. 102:201–208. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhao L, Li AQ, Zhou TF, Zhang MQ and Qin
XM: Exendin-4 alleviates angiotensin II-induced senescence in
vascular smooth muscle cells by inhibiting Rac1 activation via a
cAMP/PKA-dependent pathway. Am J Physiol Cell Physiol.
307:C1130–C1141. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lee KY, Kim JR and Choi HC:
Genistein-induced LKB1-AMPK activation inhibits senescence of VSMC
through autophagy induction. Vascul Pharmacol. 81:75–82. 2016.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Bian M, Du X, Cui J, Wang P, Wang W, Zhu
W, Zhang T and Chen Y: Celastrol protects mouse retinas from bright
light-induced degeneration through inhibition of oxidative stress
and inflammation. J Neuroinflammation. 13:502016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ma X, Xu L, Alberobello AT, Gavrilova O,
Bagattin A, Skarulis M, Liu J, Finkel T and Mueller E: Celastrol
protects against obesity and metabolic dysfunction through
activation of a HSF1-PGC1α transcriptional axis. Cell Metab.
22:695–708. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang YL, Lam KK, Cheng PY and Lee YM:
Celastrol prevents circulatory failure via induction of heme
oxygenase-1 and heat shock protein 70 in endotoxemic rats. J
Ethnopharmacol. 162:168–175. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Gu L, Bai W, Li S, Zhang Y, Han Y, Gu Y,
Meng G, Xie L, Wang J, Xiao Y, et al: Celastrol prevents
atherosclerosis via inhibiting LOX-1 and oxidative stress. PLoS
One. 8:e654772013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Der Sarkissian S, Cailhier JF, Borie M,
Stevens LM, Gaboury L, Mansour S, Hamet P and Noiseux N: Celastrol
protects ischaemic myocardium through a heat shock response with
up-regulation of haeme oxygenase-1. Br J Pharmacol. 171:5265–5279.
2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hu H, Straub A, Tian Z, Bassler N, Cheng J
and Peter K: Celastrol, a triterpene extracted from Tripterygium
wilfordii Hook F, inhibits platelet activation. J Cardiovasc
Pharmacol. 54:240–245. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lu C, Zhang X, Zhang D, Pei E, Xu J, Tang
T, Ye M, Uzan G, Zhi K, Li M and Zuo K: Short time tripterine
treatment enhances endothelial progenitor cell function via heat
shock protein 32. J Cell Physiol. 230:1139–1147. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li L, Tan J, Miao Y, Lei P and Zhang Q:
ROS and Autophagy: Interactions and molecular regulatory
mechanisms. Cell Mol Neurobiol. 35:615–621. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tai S, Hu XQ, Peng DQ, Zhou SH and Zheng
XL: The roles of autophagy in vascular smooth muscle cells. Int J
Cardiol. 211:1–6. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Nussenzweig SC, Verma S and Finkel T: The
role of autophagy in vascular biology. Circ Res. 116:480–488. 2015.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Grootaert MO, da Costa Martins PA, Bitsch
N, Pintelon I, De Meyer GR, Martinet W and Schrijvers DM: Defective
autophagy in vascular smooth muscle cells accelerates senescence
and promotes neointima formation and atherogenesis. Autophagy.
11:2014–2032. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Feng S, Hu Y, Peng S, Han S, Tao H, Zhang
Q, Xu X, Zhang J and Hu H: Nanoparticles responsive to the
inflammatory microenvironment for targeted treatment of arterial
restenosis. Biomaterials. 105:167–184. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen Q, Bei JJ, Liu C, Feng SB, Zhao WB,
Zhou Z, Yu ZP, Du XJ and Hu HY: HMGB1 induces secretion of matrix
vesicles by macrophages to enhance ectopic mineralization. PLoS
One. 11:e01566862016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tsai IC, Pan ZC, Cheng HP, Liu CH, Lin BT
and Jiang MJ: Reactive oxygen species derived from NADPH oxidase 1
and mitochondria mediate angiotensin II-induced smooth muscle cell
senescence. J Mol Cell Cardiol. 98:18–27. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Davalli P, Mitic T, Caporali A, Lauriola A
and D'Arca D: ROS, cell senescence, and novel molecular mechanisms
in aging and age-related diseases. Oxid Med Cell Longev.
2016:35651272016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yin H and Pickering JG: Cellular
senescence and vascular disease: Novel routes to better
understanding and therapy. Can J Cardiol. 32:612–623. 2016.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhong Z, Sanchez-Lopez E and Karin M:
Autophagy, inflammation, and immunity: A troika governing cancer
and its treatment. Cell. 166:288–298. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Rubinsztein DC, Marino G and Kroemer G:
Autophagy and aging. Cell. 146:682–695. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Shan H, Guo D, Li X, Zhao X, Li W and Bai
X: From autophagy to senescence and apoptosis in Angiotensin
II-treated vascular endothelial cells. APMIS. 122:985–992. 2014.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Mei Y, Thompson MD, Cohen RA and Tong X:
Autophagy and oxidative stress in cardiovascular diseases. Biochim
Biophys Acta. 1852:243–251. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Deng YN, Shi J, Liu J and Qu QM: Celastrol
protects human neuroblastoma SH-SY5Y cells from rotenone-induced
injury through induction of autophagy. Neurochem Int. 63:1–9. 2013.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhao J, Sun Y, Shi P, Dong JN, Zuo LG,
Wang HG, Gong JF, Li Y, Gu LL, Li N, et al: Celastrol ameliorates
experimental colitis in IL-10 deficient mice via the up-regulation
of autophagy. Int Immunopharmacol. 26:221–228. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yu X, Tao W, Jiang F, Li C, Lin J and Liu
C: Celastrol attenuates hypertension-induced inflammation and
oxidative stress in vascular smooth muscle cells via induction of
heme oxygenase-1. Am J Hypertens. 23:895–903. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Shinojima N, Yokoyama T, Kondo Y and Kondo
S: Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in
curcumin-induced autophagy. Autophagy. 3:635–637. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lee HW, Jang KS, Choi HJ, Jo A, Cheong JH
and Chun KH: Celastrol inhibits gastric cancer growth by induction
of apoptosis and autophagy. BMB Rep. 47:697–702. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Klionsky DJ, Abdelmohsen K, Abe A, Abedin
MJ, Abeliovich H, Arozena A Acevedo, Adachi H, Adams CM, Adams PD,
Adeli K, et al: Guidelines for the use and interpretation of assays
for monitoring autophagy (3rd edition). Autophagy. 12:1–222. 2016.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Moscat J and Diaz-Meco MT: p62 at the
crossroads of autophagy, apoptosis, and cancer. Cell.
137:1001–1004. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Rodriguez-Arribas M, Yakhine-Diop SM,
González-Polo RA, Niso-Santano M and Fuentes JM: Turnover of
lipidated LC3 and autophagic cargoes in mammalian cells. Methods
Enzymol. 587:55–70. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wang S, Wang C, Yan F, Wang T, He Y, Li H,
Xia Z and Zhang Z: N-acetylcysteine attenuates diabetic myocardial
ischemia reperfusion injury through inhibiting excessive autophagy.
Mediators Inflamm. 2017:92572912017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kim JH, Lee JO, Lee SK, Kim N, You GY,
Moon JW, Sha J, Kim SJ, Park SH and Kim HS: Celastrol suppresses
breast cancer MCF-7 cell viability via the AMP-activated protein
kinase (AMPK)-induced p53-polo like kinase 2 (PLK-2) pathway. Cell
Signal. 25:805–813. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Yu Y, Koehn CD, Yue Y, Li S, Thiele GM,
Hearth-Holmes MP, Mikuls TR, O'Dell JR, Klassen LW, Zhang Z and Su
K: Celastrol inhibits inflammatory stimuli-induced neutrophil
extracellular trap formation. Curr Mol Med. 15:401–410. 2015.
View Article : Google Scholar : PubMed/NCBI
|