1
|
Barbano R, Palumbo O, Pasculli B, Galasso
M, Volinia S, D'Angelo V, Icolaro N, Coco M, Dimitri L, Graziano P,
et al: A miRNA signature for defining aggressive phenotype and
prognosis in gliomas. PLoS One. 9:e1089502014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Pessina F, Navarria P, Cozzi L, Ascolese
AM, Simonelli M, Santoro A, Tomatis S, Riva M, Fava E, Scorsetti M
and Bello L: Value of surgical resection in patients with newly
diagnosed grade III glioma treated in a multimodal approach:
Surgery, chemotherapy and radiotherapy. Ann Surg Oncol.
23:3040–3046. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Haas BE, Horvath S, Pietiläinen KH, Cantor
RM, Nikkola E, Weissglas-Volkov D, Rissanen A, Civelek M,
Cruz-Bautista I, Riba L, et al: Adipose co-expression networks
across Finns and Mexicans identify novel triglyceride-associated
genes. BMC Med Genomics. 5:612012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Silverman EK and Loscalzo J: Network
medicine approaches to the genetics of complex diseases. Discov
Med. 14:143–152. 2012.PubMed/NCBI
|
5
|
Zhang B and Horvath S: A general framework
for weighted gene co-expression network analysis. Stat Appl Genet
Mol Biol. 4:Article172005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Chen Y, Zhu J, Lum PY, Yang X, Pinto S,
MacNeil DJ, Zhang C, Lamb J, Edwards S, Sieberts SK, et al:
Variations in DNA elucidate molecular networks that cause disease.
Nature. 452:429–435. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Langfelder P and Horvath S: WGCNA: An R
package for weighted correlation network analysis. BMC
Bioinformatics. 9:5592008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Voineagu I, Wang X, Johnston P, Lowe JK,
Tian Y, Horvath S, Mill J, Cantor RM, Blencowe BJ and Geschwind DH:
Transcriptomic analysis of autistic brain reveals convergent
molecular pathology. Nature. 474:380–384. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhao W, Langfelder P, Fuller T, Dong J, Li
A and Hovarth S: Weighted gene coexpression network analysis: State
of the art. J Biopharm Stat. 20:281–300. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Cancer Genome Atlas Research Network, .
Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA,
Ellrott K, Shmulevich I, Sander C and Stuart JM: The cancer genome
atlas pan-cancer analysis project. Nat Genet. 45:1113–1120. 2013.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Langfelder P and Horvath S: Eigengene
networks for studying the relationships between co-expression
modules. BMC Syst Biol. 1:542007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ding Y, Hubert CG, Herman J, Corrin P,
Toledo CM, Skutt-Kakaria K, Vazquez J, Basom R, Zhang B, Risler JK,
et al: Cancer-specific requirement for BUB1B/BUBR1 in human brain
tumor isolates and genetically transformed cells. Cancer Discov.
3:198–211. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Venere M, Miller TE and Rich JN: Mitotic
control of cancer stem cells. Cancer Discov. 3:141–144. 2013.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Xiao YX and Yang WX: KIFC1: A promising
chemotherapy target for cancer treatment? Oncotarget.
7:48656–48670. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Stevnsner T and Bohr VA: Studies on the
role of topoisomerases in general, gene- and strand-specific DNA
repair. Carcinogenesis. 14:1841–1850. 1993. View Article : Google Scholar : PubMed/NCBI
|
16
|
Watt PM and Hickson ID: Structure and
function of type II DNA topoisomerases. Biochem J. 303:681–695.
1994. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kasahara K, Fujiwara Y, Sugimoto Y, Nishio
K, Tamura T, Matsuda T and Saijo N: Determinants of response to the
DNA topoisomerase II inhibitors doxorubicin and etoposide in human
lung cancer cell lines. J Natl Cancer Inst. 84:113–118. 1992.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Shpitz B, Bomstein Y, Zehavi T, Bernheim
J, Liverant S, Kaufman Z, Buklan G and Klein E: Topoisomerase
IIalpha expression in ductal carcinoma in situ of the breast: A
preliminary study. Hum Pathol. 31:1249–1254. 2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Taniguchi K, Wakabayashi T, Yoshida T,
Mizuno M, Yoshikawa K, Kikuchi A, Nakashima N and Yoshida J:
Immunohistochemical staining of DNA topoisomerase IIalpha in human
gliomas. J Neurosurg. 91:477–482. 1999. View Article : Google Scholar : PubMed/NCBI
|
20
|
Arivazhagan A, Kumar DM, Sagar V, Patric
IR, Sridevi S, Thota B, Srividya MR, Prasanna K, Thennarasu K,
Mondal N, et al: Higher topoisomerase 2 alpha gene transcript
levels predict better prognosis in GBM patients receiving
temozolomide chemotherapy: Identification of temozolomide as a
TOP2A inhibitor. J Neurooncol. 107:289–297. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Holden JA and Townsend JJ: DNA
topoisomerase II-alpha as a proliferation marker in astrocytic
neoplasms of the central nervous system: Correlation with MIB1
expression and patient survival. Mod Pathol. 12:1094–1100.
1999.PubMed/NCBI
|
22
|
Bie L, Zhao G, Cheng P, Rondeau G,
Porwollik S, Ju Y, Xia XQ and McClelland M: The accuracy of
survival time prediction for patients with glioma is improved by
measuring mitotic spindle checkpoint gene expression. PLoS One.
6:e256312011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Shichiri M, Yoshinaga K, Hisatomi H,
Sugihara K and Hirata Y: Genetic and epigenetic inactivation of
mitotic checkpoint genes hBUB1 and hBUBR1 and their relationship to
survival. Cancer Res. 62:13–17. 2002.PubMed/NCBI
|
24
|
Finetti P, Guille A, Adelaide J, Birnbaum
D, Chaffanet M and Bertucci F: ESPL1 is a candidate oncogene of
luminal B breast cancers. Breast Cancer Res Treat. 147:51–59. 2014.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhang C, Min L, Zhang L, Ma Y, Yang Y and
Shou C: Combined analysis identifies six genes correlated with
augmented malignancy from non-small cell to small cell lung cancer.
Tumour Biol. 37:2193–2207. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yu C, Yu J, Yao X, Wu WK, Lu Y, Tang S, Li
X, Bao L, Li X, Hou Y, et al: Discovery of biclonal origin and a
novel oncogene SLC12A5 in colon cancer by single-cell sequencing.
Cell Res. 24:701–712. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Xu L, Li X, Cai M, Chen J, Li X, Wu WK,
Kang W, Tong J, To KF, Guan XY, et al: Increased expression of
Solute carrier family 12 member 5 via gene amplification
contributes to tumour progression and metastasis and associates
with poor survival in colorectal cancer. Gut. 65:635–646. 2016.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Barbagallo D, Condorelli A, Ragusa M,
Salito L, Sammito M, Banelli B, Caltabiano R, Barbagallo G, Zappalà
A, Battaglia R, et al: Dysregulated miR-671-5p/CDR1-AS/CDR1/VSNL1
axis is involved in glioblastoma multiforme. Oncotarget.
7:4746–4759. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Braunewell KH, Dwary AD, Richter F, Trappe
K, Zhao C, Giegling I, Schönrath K and Rujescu D: Association of
VSNL1 with schizophrenia, frontal cortical function, and biological
significance for its gene product as a modulator of cAMP levels and
neuronal morphology. Transl Psychiatry. 1:e222011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Liyou NE, Buller KM, Tresillian MJ, Elvin
CM, Scott HL, Dodd PR, Tannenberg AE and McManus ME: Localization
of a brain sulfotransferase, SULT4A1, in the human and rat brain:
An immunohistochemical study. J Histochem Cytochem. 51:1655–1664.
2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Modena P, Lualdi E, Facchinetti F, Veltman
J, Reid JF, Minardi S, Janssen I, Giangaspero F, Forni M,
Finocchiaro G, et al: Identification of tumor-specific molecular
signatures in intracranial ependymoma and association with clinical
characteristics. J Clin Oncol. 24:5223–5233. 2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Dubuc AM, Northcott PA, Mack S, Witt H,
Pfister S and Taylor MD: The genetics of pediatric brain tumors.
Curr Neurol Neurosci Rep. 10:215–223. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Maglott DR, Feldblyum TV, Durkin AS and
Nierman WC: Radiation hybrid mapping of SNAP PCSK2, and THBD (human
chromosome 20p). Mamm Genome. 7:400–401. 1996. View Article : Google Scholar : PubMed/NCBI
|
34
|
Rizo J and Südhof TC: Snares and Munc18 in
synaptic vesicle fusion. Nat Rev Neurosci. 3:641–653. 2002.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Hu J, Ho AL, Yuan L, Hu B, Hua S, Hwang
SS, Zhang J, Hu T, Zheng H, Gan B, et al: From the cover:
Neutralization of terminal differentiation in gliomagenesis. Proc
Natl Acad Sci USA. 110:14520–14527. 2013; View Article : Google Scholar : PubMed/NCBI
|
36
|
Genin A, Desir J, Lambert N, Biervliet M,
Van Der Aa N, Pierquin G, Killian A, Tosi M, Urbina M, Lefort A, et
al: Kinetochore KMN network gene CASC5 mutated in primary
microcephaly. Hum Mol Genet. 21:5306–5317. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Akiyama Y, Komiyama M, Miyata H, Yagoto M,
Ashizawa T, Iizuka A, Oshita C, Kume A, Nogami M, Ito I, et al:
Novel cancer-testis antigen expression on glioma cell lines derived
from high-grade glioma patients. Oncol Rep. 31:1683–1690. 2014.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Prezas P, Scorilas A, Yfanti C, Viktorov
P, Agnanti N, Diamandis E and Talieri M: The role of human tissue
kallikreins 7 and 8 in intracranial malignancies. Biol Chem.
387:1607–1612. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Drucker KL, Gianinni C, Decker PA,
Diamandis EP and Scarisbrick IA: Prognostic significance of
multiple kallikreins in high-grade astrocytoma. BMC Cancer.
15:5652015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Walker F, Nicole P, Jallane A,
Soosaipillai A, Mosbach V, Oikonomopoulou K, Diamandis EP, Magdolen
V and Darmoul D: Kallikrein-related peptidase 7 (KLK7) is a
proliferative factor that is aberrantly expressed in human colon
cancer. Biol Chem. 395:1075–1086. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhang CY, Zhu Y, Rui WB, Dai J and Shen
ZJ: Expression of kallikrein-related peptidase 7 is decreased in
prostate cancer. Asian J Androl. 17:106–110. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Freije WA, Castro-Vargas FE, Fang Z,
Horvath S, Cloughesy T, Liau LM, Mischel PS and Nelson SF: Gene
expression profiling of gliomas strongly predicts survival. Cancer
Res. 64:6503–6510. 2004. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhang X, Wu J, Li X, Fu L, Gao D, Bai H
and Liu X: Effects of recombinant human bone morphogenic protein-2
and hyaluronic acid on invasion of brain glioma in vivo. Zhonghua
Yi Xue Za Zhi. 82:90–93. 2002.(In Chinese). PubMed/NCBI
|
44
|
Valente V, Serafim RB, de Oliveira LC,
Adorni FS, Torrieri R, Tirapelli DP, Espreafico EM, Oba-Shinjo SM,
Marie SK, Paçó-Larson ML and Carlotti CG Jr: Modulation of HJURP
(Holliday Junction-Recognizing Protein) levels is correlated with
glioblastoma cells survival. PLoS One. 8:e622002013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Tabuse M, Ohta S, Ohashi Y, Fukaya R,
Misawa A, Yoshida K, Kawase T, Saya H, Thirant C, Chneiweiss H, et
al: Functional analysis of HOXD9 in human gliomas and glioma cancer
stem cells. Mol Cancer. 10:602011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Bie L, Zhao G, Wang YP and Zhang B:
Kinesin family member 2C (KIF2C/MCAK) is a novel marker for
prognosis in human gliomas. Clin Neurol Neurosurg. 114:356–360.
2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Gu C, Banasavadi-Siddegowda YK, Joshi K,
Nakamura Y, Kurt H, Gupta S and Nakano I: Tumor-specific activation
of the C-JUN/MELK pathway regulates glioma stem cell growth in a
p53-dependent manner. Stem Cells. 31:870–881. 2013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Wang Q, Wang L, Li D, Deng J, Zhao Z, He
S, Zhang Y and Tu Y: Kinesin family member 14 is a candidate
prognostic marker for outcome of glioma patients. Cancer Epidemiol.
37:79–84. 2013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhang X, Cheng J, Fu L and Li Q:
Overexpression of tissue microRNA10b may help predict glioma
prognosis. J Clin Neurosci. 29:59–63. 2016. View Article : Google Scholar : PubMed/NCBI
|
50
|
Chen X, Zhang Y, Shi Y, Lian H, Tu H, Han
S, Yin J, Peng B, Zhou B, He X and Liu W: MiR-129 triggers
autophagic flux by regulating a novel Notch-1/E2F7/Beclin-1 axis to
impair the viability of human malignant glioma cells. Oncotarget.
7:9222–9235. 2016. View Article : Google Scholar : PubMed/NCBI
|
51
|
Shang C, Hong Y, Guo Y, Liu YH and Xue YX:
miR-128 regulates the apoptosis and proliferation of glioma cells
by targeting RhoE. Oncol Lett. 11:904–908. 2016.PubMed/NCBI
|