Complex role of connexin 43 in astrocytic tumors and possible promotion of glioma‑associated epileptic discharge (Review)
- Authors:
- Hui Dong
- Xing‑Wang Zhou
- Xiang Wang
- Yuan Yang
- Jie‑Wen Luo
- Yan‑Hui Liu
- Qing Mao
-
Affiliations: Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China - Published online on: September 26, 2017 https://doi.org/10.3892/mmr.2017.7618
- Pages: 7890-7900
This article is mentioned in:
Abstract
![]() |
Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shen F, Wu CX, Yao Y, Peng P, Qin ZY, Wang Y, Zheng Y and Zhou LF: Transition over 35 years in the incidence rates of primary central nervous system tumors in Shanghai, China and histological subtyping based on a single center experience spanning 60 years. Asian Pac J Cancer Prev. 14:7385–7393. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jiang T, Mao Y, Ma W, Mao Q, You Y, Yang X, Jiang C, Kang C, Li X, Chen L, et al: CGCG clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett. 375:263–273. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, Morozova O, Newton Y, Radenbaugh A, Pagnotta SM, et al: Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell. 164:550–563. 2016. View Article : Google Scholar : PubMed/NCBI | |
Foote MB, Papadopoulos N and Diaz LA Jr: Genetic Classification of Gliomas: Refining Histopathology. Cancer Cell. 28:9–11. 2015. View Article : Google Scholar : PubMed/NCBI | |
Almad AA, Doreswamy A, Gross SK, Richard JP, Huo Y, Haughey N and Maragakis NJ: Connexin 43 in astrocytes contributes to motor neuron toxicity in amyotrophic lateral sclerosis. GLIA. 64:1154–1169. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sharrow AC, Li Y, Micsenyi A, Griswold RD, Wells A, Monga SS and Blair HC: Modulation of osteoblast gap junction connectivity by serum, TNFalpha, and TRAIL. Exp Cell Res. 314:297–308. 2008. View Article : Google Scholar : PubMed/NCBI | |
Giepmans BN: Gap junctions and connexin-interacting proteins. Cardiovasc Res. 62:233–245. 2004. View Article : Google Scholar : PubMed/NCBI | |
Freitas-Andrade M and Naus CC: Astrocytes in neuroprotection and neurodegeneration: The role of connexin43 and pannexin1. Neuroscience. 323:207–221. 2016. View Article : Google Scholar : PubMed/NCBI | |
Garbelli R, Frassoni C, Condorelli DF, Salinaro A Trovato, Musso N, Medici V, Tassi L, Bentivoglio M and Spreafico R: Expression of connexin 43 in the human epileptic and drug-resistant cerebral cortex. Neurology. 76:895–902. 2011. View Article : Google Scholar : PubMed/NCBI | |
Almad AA, Doreswamy A, Gross SK, Richard JP, Huo Y, Haughey N and Maragakis NJ: Connexin 43 in Astrocytes Contributes to Motor Neuron Toxicity in Amyotrophic Lateral Sclerosis. Glia. 64:1154–1169. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tabernero A, Gangoso E, Jaraíz-Rodríguez M and Medina JM: The role of connexin43-Src interaction in astrocytomas: A molecular puzzle. Neuroscience. 323:183–194. 2016. View Article : Google Scholar : PubMed/NCBI | |
Giaume C, Fromaget C, Aoumari A, Cordier J, Glowinski J and Gros D: Gap junctions in cultured astrocytes: Single-channel currents and characterization of channel-forming protein. Neuron. 6:133–143. 1991. View Article : Google Scholar : PubMed/NCBI | |
Giaume C, Koulakoff A, Roux L, Holcman D and Rouach N: Astroglial networks: A step further in neuroglial and gliovascular interactions. Nat Rev Neurosci. 11:87–99. 2010. View Article : Google Scholar : PubMed/NCBI | |
Giaume C, Leybaert L, Naus CC and Sáez JC: Connexin and pannexin hemichannels in brain glial cells: Properties, pharmacology, and roles. Front Pharmacol. 4:882013. View Article : Google Scholar : PubMed/NCBI | |
Bennett MV, Contreras JE, Bukauskas FF and Sáez JC: New roles for astrocytes: Gap junction hemichannels have something to communicate. Trends Neurosci. 26:610–617. 2003. View Article : Google Scholar : PubMed/NCBI | |
Nagy JI and Rash JE: Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Brain Res Rev. 32:29–44. 2000. View Article : Google Scholar : PubMed/NCBI | |
Scemes E: Components of astrocytic intercellular calcium signaling. Mol Neurobiol. 22:167–179. 2000. View Article : Google Scholar : PubMed/NCBI | |
van den pol AN, Finkberiner SM and Cornell-Bell AH: Calcium excitability and oscillations in suprachiasmatic nucleus neurons and glia in vitro. J Neurosci. 12:2648–2664. 1992.PubMed/NCBI | |
Mehta PP, Yamamoto M and Rose B: Transcription of the gene for the gap junctional protein connexin43 and expression of functional cell-to-cell channels are regulated by c AMP. Mol Biol Cell. 3:839–850. 1992. View Article : Google Scholar : PubMed/NCBI | |
Giaume C, Tabernero A and Medina JM: Metabolic trafficking through astrocytic gap junctions. Glia. 21:114–123. 1997. View Article : Google Scholar : PubMed/NCBI | |
Nedergaard M: Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science. 263:1768–1771. 1994. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Nwagwu C, Le DM, Yong VW, Song H and Couldwell WT: Increased invasive capacity of connexin43-overexpressing malignant glioma cells. J Neurosurg. 99:1039–1046. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bates DC, Sin WC, Aftab Q and Naus CC: Connexin43 Enhances Glioma Invasion by a Mechanism Involving the Carboxy Terminus. GLIA. 55:1554–1564. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sin WC, Crespin S and Mesnil M: Opposing roles of connexin43 in glioma progression. Biochim Biophys Acta. 1818:2058–2067. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sin WC, Aftab Q, Bechberger JF, Leung JH, Chen H and Naus CC: Astrocytes promote glioma invasion via the gap junction protein connexin43. Oncogene. 35:1504–1516. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ye XY, Jiang QH, Hong T, Zhang ZY, Yang RJ, Huang JQ, Hu K and Peng YP: Altered expression of connexin43 and phosphorylation connexin43 in glioma tumors. Int J Clin Exp Pathol. 8:4296–4306. 2015.PubMed/NCBI | |
Crespin S, Fromont G, Wager M, Levillain P, Cronier L, Monvoisin A, Defamie N and Mesnil M: Expression of a gap junction protein, connexin43, in a large panel of human gliomas: New insights. Cancer Med. 5:1742–1752. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kolar K, Freitas-Andrade M, Bechberger JF, Krishnan H, Goldberg GS, Naus CC and Sin WC: Podoplanin: A marker for reactive gliosis in gliomas and brain injury. J Neuropathol Exp Neurol. 74:64–74. 2015. View Article : Google Scholar : PubMed/NCBI | |
Aronica E, Gorter JA, Jansen GH, Leenstra S, Yankaya B and Troost D: Expression of connexin 43 and connexin 32 gap-junction proteins in epilepsy-associated brain tumors and in the perilesional epileptic cortex. Acta Neuropathol. 101:449–459. 2001.PubMed/NCBI | |
Pallud J, Le van Quyen M, Bielle F, Pellegrino C, Varlet P, Cresto N, Baulac M, Duyckaerts C, Kourdougli N, Chazal G, et al: Cortical GABAergic excitation contributes to epileptic activities around human glioma. Sci Transl Med. 6:244ra892014. View Article : Google Scholar : PubMed/NCBI | |
Hitomi M, Deleyrolle LP, Mulkearns-Hubert EE, Jarrar A, Li M, Sinyuk M, Otvos B, Brunet S, Flavahan WA, Hubert CG, et al: Differential connexin function enhances self-renewal in glioblastoma. Cell Rep. 11:1031–1042. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yu SC, Xiao HL, Jiang XF, Wang QL, Li Y, Yang XJ, Ping YF, Duan JJ, Jiang JY, Ye XZ, et al: Connexin 43 reverses malignant phenotypes of glioma stem cells by modulating E-cadherin. Stem Cell. 30:108–120. 2012. View Article : Google Scholar | |
Moinfar Z, Dambach H and Faustmann PM: Influence of drugs on gap junctions in glioma cell lines and primary astrocytes in vitro. Front Physiol. 5:1862014. View Article : Google Scholar : PubMed/NCBI | |
Naus CC and Laird DW: Implications and challenges of connexin connections to cancer. Nat Rev Cancer. 10:435–441. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Alvarez R, Tabernero A, Sánchez-Abarca LI, Orfao A, Giaume C and Medina JM: Proliferation of C6 glioma cells is blunted by the increase in gap junction communication caused by tolbutamide. FEBS Lett. 509:1–206. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Alvarez R, Paíno T, Herrero-González S, Medina JM and Tabernero A: Tolbutamide reduces glioma cell proliferation by increasing connexin43, which promotes the up-regulation of p21 and p27 and subsequent changes in retinoblastoma phosphorylation. Glia. 54:125–134. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mostafavi H, Khaksarian M, Joghataei MT, Soleimani M, Hassanzadeh G, Eftekhari S, Soleimani M, Mousavizadeh K, Estiri H, Ahmadi S and Hadjighassem MR: Selective β2 adrenergic agonist increases Cx43 and miR-451 expression via cAMP-Epac. Mol Med Rep. 9:2405–2410. 2014. View Article : Google Scholar : PubMed/NCBI | |
Moinfar Z, Dambach H, Schoenebeck B, Förster E, Prochnow N and Faustmann PM: Estradiol receptors regulate differential connexin 43 expression in F98 and C6 glioma cell lines. PLoS One. 11:e01500072016. View Article : Google Scholar : PubMed/NCBI | |
Ozog MA, Bechberger JF and Naus CC: Ciliary neurotrophic factor (CNTF) in combination with its soluble receptor (CNTFRalpha) increases connexin43 expression and suppresses growth of C6 glioma cells. Cancer Res. 62:3544–3548. 2002.PubMed/NCBI | |
Ghosh S, Kumar A, Tripathi RP and Chandna S: Connexin-43 regulates p38-mediated cell migration and invasion induced selectively in tumour cells by low doses of γ-radiation in an ERK-1/2-independent manner. Carcinogenesis. 35:383–395. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gangoso E, Thirant C, Chneiweiss H, Medina JM and Tabernero A: A cell-penetrating peptide based on the interaction between c-Src and connexin43 reverses glioma stem cell phenotype. Cell Death Dis. 5:e10232014. View Article : Google Scholar : PubMed/NCBI | |
Herrero-González S, Valle-Casuso JC, Sánchez-Alvarez R, Giaume C, Medina JM and Tabernero A: Connexin43 is involved in the effect of endothelin-1 on astrocyte proliferation and glucose uptake. Glia. 57:222–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li G, Liu X, Liu Z and Su Z: Interactions of connexin 43 and aquaporin-4 in the formation of glioma-induced brain edema. Mol Med Rep. 11:1188–1194. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kolar K, Freitas-Andrade M, Bechberger JF, Krishnan H, Goldberg GS, Naus CC and Sin WC: Podoplanin: A marker for reactive gliosis in gliomas and brain injury. J Neuropathol Exp Neurol. 74:64–74. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, DeMattia JA, Song H and Couldwell WT: Communication between malignant glioma cells and vascular endothelial cells through gap junctions. J Neurosurg. 98:846–853. 2003. View Article : Google Scholar : PubMed/NCBI | |
Huang R, Lin Y, Wang CC, Gano J, Lin B, Shi Q, Boynton A, Burke J and Huang RP: Connexin 43 suppresses human glioblastoma cell growth by down-regulation of monocyte chemotactic protein 1, as discovered using protein array technology. Cancer Res. 62:2806–2812. 2002.PubMed/NCBI | |
Niu J, Li T, Yi C, Huang N, Koulakoff A, Weng C, Li C, Zhao CJ, Giaume C and Xiao L: Connexin-based channels contribute to metabolic pathways in the oligodendroglial lineage. J Cell Sci. 129:1902–1914. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang YW, Nakayama K, Nakayama K and Morita I: A novel route for connexin 43 to inhibit cell proliferation: Negative regulation of S-phase kinase-associated protein (Skp 2). Cancer Res. 63:1623–1630. 2003.PubMed/NCBI | |
Kamei J, Toyofuku T and Hori M: Negative regulation of p21 by beta-catenin/TCF signaling: A novel mechanism by which cell adhesion molecules regulate cell proliferation. Biochem Biophys Res Commun. 312:380–387. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tabernero A, Sánchez-Alvarez R and Medina JM: Increased levels of cyclins D1 and D3 after inhibition of gap junctional communication in astrocytes. J Neurochem. 96:973–982. 2006. View Article : Google Scholar : PubMed/NCBI | |
Geng Y, Eaton EN, Picón M, Roberts JM, Lundberg AS, Gifford A, Sardet C and Weinberg RA: Regulation of cyclin E transcription by E2Fs and retinoblastoma protein. Oncogene. 12:1173–1180. 1996.PubMed/NCBI | |
Sin WC, Bechberger JF, Rushlow WJ and Naus CC: Dose-dependent differential upregulation of CCN1/Cyr61 and CCN3/NOV by the gap junction protein connexin43 in glioma cells. J Cell Biochem. 103:1772–1782. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fu CT, Bechberger JF, Ozog MA, Perbal B and Naus CC: CCN3 (NOV) interacts with connexin43 in C6 glioma cells: Possible mechanism of connexin-mediated growth suppression. J Biol Chem. 279:36943–36950. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bradshaw SL, Naus CC, Zhu D, Kidder GM, D'Ercole AJ and Han VK: Alterations in the synthesis of insulin-like growth factor binding proteins and insulin-like growth factors in rat C6 glioma cells transfected with a gap junction connexin43 cDNA. Regul Pept. 48:99–112. 1993. View Article : Google Scholar : PubMed/NCBI | |
Bradshaw SL, Naus CC, Zhu D, Kidder GM and Han VK: Insulin-like growth factor binding protein-4 gene expression is induced by transfection of gap junction connexin43 gene in a C6 glioma cell line. Growth Regul. 3:26–29. 1993.PubMed/NCBI | |
Goldberg GS, Bechberger JF, Tajima Y, Merritt M, Omori Y, Gawinowicz MA, Narayanan R, Tan Y, Sanai Y, Yamasaki H, et al: Connexin43 suppresses MFG-E8 while inducing contact growth inhibition of glioma cells. Cancer Res. 60:6018–6026. 2000.PubMed/NCBI | |
Xia ZB, Pu PY, Huang Q, You YP, Wang GX and Wang CY: Preliminary study on the mechanism of connexin 43 gene transfection in the control of glioma cell proliferation. Zhonghua Zhong Liu Za Zhi. 25:4–8. 2003.(In Chinese). PubMed/NCBI | |
González-Sánchez A, Jaraíz-Rodríguez M, Domínguez-Prieto M, Herrero-González S, Medina JM and Tabernero A: Connexin43 recruits PTEN and Csk to inhibit c-Src activity in glioma cells and astrocytes. Oncotarget. 7:49819–49833. 2016. View Article : Google Scholar : PubMed/NCBI | |
Herrero-González S, Gangoso E, Giaume C, Naus CC, Medina JM and Tabernero A: Connexin43 inhibits the oncogenic activity of c-Src in C6 glioma cells. Oncogene. 29:5712–5723. 2010. View Article : Google Scholar : PubMed/NCBI | |
Suzhi Z, Liang T, Yuexia P, Lucy L, Xiaoting H, Yuan Z and Qin W: Gap junctions enhance the antiproliferative effect of microRNA-124-3p in glioblastoma cells. J Cell Physiol. 230:2476–2488. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dang X, Doble BW and Kardami E: The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth. Mol Cell Biochem. 242:1–2. 2003. View Article : Google Scholar | |
Mennecier G, Derangeon M, Coronas V, Hervé JC and Mesnil M: Aberrant expression and localization of connexin43 and connexin30 in a rat glioma cell line. Mol Carcinog. 47:391–401. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jin Z, Xu S, Yu H, Yang B, Zhao H and Zhao G: miR-125b inhibits connexin43 and Promotes glioma growth. Cell Mol Neurobiol. 33:1143–1148. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hao J, Zhang C, Zhang A, Wang K, Jia Z, Wang G, Han L, Kang C and Pu P: miR-221/222 is the regulator of Cx43 expression in human glioblastoma cells. Oncol Rep. 27:1–1510. 2012. | |
Robe PA, Rogister B, Merville MP and Bours V: Growth regulation of astrocytes and C6 cells by TGFbeta1: Correlation with gap junctions. NeuroReport. 11:2837–2841. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Feng X, Wang J, Xu X, Liu H and Lin N: Adenovirus-mediated delivery of bFGF small interfering RNA increases levels of connexin 43 in the glioma cell line, U251. J Exp Clin Cancer Res. 29:32010. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Nwagwu C, Le DM, Yong VW, Song H and Couldwell WT: Increased invasive capacity of connexin43-overexpressing malignant glioma cells. J Neurosurg. 99:1039–1046. 2003. View Article : Google Scholar : PubMed/NCBI | |
Strale PO, Clarhaut J, Lamiche C, Cronier L, Mesnil M and Defamie N: Down-regulation of Connexin43 expression reveals the involvement of caveolin-1 containing lipid rafts in human U251 glioblastoma cell invasion. Mol Carcinog. 51:845–860. 2012. View Article : Google Scholar : PubMed/NCBI | |
Qin LJ, Jia YS, Zhang YB and Wang YH: Cyclooxygenase inhibitor induces the upregulation of connexin-43 expression in C6 glioma cells. Biomed Rep. 4:444–448. 2016. View Article : Google Scholar : PubMed/NCBI | |
Aftab Q, Sin WC and Naus C: Reduction in gap junction intercellular communication promotes glioma migration. Oncotarget. 6:11447–11464. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hong X, Sin WC, Harris AL and Naus CC: Gap junctions modulate glioma invasion by direct transfer of microRNA. Oncotarget. 6:15566–15577. 2015. View Article : Google Scholar : PubMed/NCBI | |
McDonough WS, Johansson A, Joffee H, Giese A and Berens ME: Gap junction intercellular communication in gliomas is inversely related to cell motility. Int J Dev Neurosci. 17:601–611. 1999. View Article : Google Scholar : PubMed/NCBI | |
Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, Weil S, Horstmann H, Wiestler B, Syed M, et al: Brain tumour cells interconnect to a functional and resistant network. Nature. 528:93–98. 2015.PubMed/NCBI | |
Reichert M, Müller T and Hunziker W: The PDZ domains of zonula occludens-1 induce an epithelial to mesenchymal transition of Madin-Darby canine kidney I cells. Evidence for a role of beta-catenin/Tcf/Lef signaling. J Biol Chem. 275:9492–9500. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lin JH, Takano T, Cotrina ML, Arcuino G, Kang J, Liu S, Gao Q, Jiang L, Li F, Lichtenberg-Frate H, et al: Connexin 43 enhances the adhesivity and mediates the invasion of malignant glioma cells. J Neurosci. 22:4302–4311. 2002.PubMed/NCBI | |
Reszec J, Szkudlarek M, Hermanowicz A, Bernaczyk PS, Mariak Z and Chyczewski L: N-cadherin, beta-catenin and connexin 43 expression in astrocytic tumours of various grades. Histol Histopathol. 30:361–371. 2015.PubMed/NCBI | |
Kirschstein T and Köhling R: Animal models of tumour-associated epilepsy. J Neurosci Methods. 260:109–117. 2016. View Article : Google Scholar : PubMed/NCBI | |
Patel A, Sabbineni H, Clarke A and Somanath PR: Novel roles of Src in cancer cell epithelial-to-mesenchymal transition, vascular permeability, microinvasion and metastasis. Life Sci. 157:52–61. 2016. View Article : Google Scholar : PubMed/NCBI | |
Elisevich K, Rempel SA, Smith BJ and Edvardsen K: Hippocampal connexin 43 expression in human complex partial seizure disorder. Exp Neurol. 145:154–164. 1997. View Article : Google Scholar : PubMed/NCBI | |
Senner V, Köhling R, Püttmann-Cyrus S, Straub H, Paulus W and Speckmann EJ: A new neurophysiological/neuropathological ex vivo model localizes the origin of glioma-associated epileptogenesis in the invasion area. Acta Neuropathol. 107:1–7. 2004. View Article : Google Scholar : PubMed/NCBI | |
Das A, GC IV Wallace, Holmes C, McDowell ML, Smith JA, Marshall JD, Bonilha L, Edwards JC, Glazier SS, Ray SK, et al: Hippocampal tissue of patients with refractory temporal lobe epilepsy is associated with astrocyte activation, inflammation, and altered expression of channels and receptors. Neuroscience. 220:237–246. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fonseca CG, Green CR and Nicholson LF: Upregulation in astrocytic connexin 43 gap junction levels may exacerbate generalized seizures in mesial temporal lobe epilepsy. Brain Res. 929:105–116. 2002. View Article : Google Scholar : PubMed/NCBI | |
Su M and Tong XX: Astrocytic gap junction in the hippocampus of rats with lithium pilocarpine-induced epilepsy. Nan Fang Yi Ke Da Xue Xue Bao. 30:2738–2741. 2010.(In Chinese). PubMed/NCBI | |
Takahashi DK, Vargas JR and Wilcox KS: Increased coupling and altered glutamate transport currents in astrocytes following kainic-acid-induced status epilepticus. Neurobiol Dis. 40:573–585. 2010. View Article : Google Scholar : PubMed/NCBI | |
Oliveira R, Christov C, Guillamo JS, de Boüard S, Palfi S, Venance L, Tardy M and Peschanski M: Contribution of gap junctional communication between tumor cells and astroglia to the invasion of the brain parenchyma by human glioblastomas. BMC Cell Biol. 6:72005. View Article : Google Scholar : PubMed/NCBI | |
Liubinas SV, O'Brien TJ, Moffat BM, Drummond KJ, Morokoff AP and Kaye AH: Tumour associated epilepsy and glutamate excitotoxicity in patients with gliomas. J Clin Neurosci. 21:899–908. 2014. View Article : Google Scholar : PubMed/NCBI | |
Armstrong TS, Grant R, Gilbert MR, Lee JW and Norden AD: Epilepsy in glioma patients: Mechanisms, management, and impact of anticonvulsant therapy. Neuro Oncol. 18:779–789. 2016. View Article : Google Scholar : PubMed/NCBI | |
Elisevich K, Rempel SA, Smith B and Allar N: Connexin 43 mRNA expression in two experimental models of epilepsy. Mol Chem Neuropathol. 32:75–88. 1997. View Article : Google Scholar : PubMed/NCBI | |
Köhling R, Senner V, Paulus W and Speckmann EJ: Epileptiform activity preferentially arises outside tumor invasion zone in glioma xenotransplants. Neurobiol Dis. 22:64–75. 2006. View Article : Google Scholar : PubMed/NCBI | |
Buckingham SC, Campbell SL, Haas BR, Montana V, Robel S, Ogunrinu T and Sontheimer H: Glutamate release by primary brain tumors induces epileptic activity. Nat Med. 17:1269–1274. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim LC, Song L and Haura EB: Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol. 6:587–595. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mylvaganam S, Ramani M, Krawczyk M and Carlen PL: Roles of gap junctions, connexins, and pannexins in epilepsy. Front Physiol. 5:1722014. View Article : Google Scholar : PubMed/NCBI | |
Kékesi O, Ioja E, Szabó Z, Kardos J and Héja L: Recurrent seizure-like events are associated with coupled astroglial synchronization. Front Cell Neurosci. 9:2152015.PubMed/NCBI | |
Jiang S, Wang YQ, Xu CF, Li YN, Guo R and Li L: Involvement of connexin43 in the infrasonic noise-induced glutamate release by cultured astrocytes. Neurochem Res. 39:833–842. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wei H, Deng F, Chen Y, Qin Y, Hao Y and Guo X: Ultrafine carbon black induces glutamate and ATP release by activating connexin and pannexin hemichannels in cultured astrocytes. Toxicology. 323:32–41. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chever O, Pannasch U, Ezan P and Rouach N: Astroglial connexin 43 sustains glutamatergic synaptic efficacy. Philos Trans R Soc Lond B Biol Sci. 369:201305962014. View Article : Google Scholar : PubMed/NCBI | |
Unger T, Bette S, Zhang J, Theis M and Engele J: Connexin-deficiency affects expression levels of glial glutamate transporters within the cerebrum. Neurosci Lett. 506:12–16. 2012. View Article : Google Scholar : PubMed/NCBI | |
Figiel M, Allritz C, Lehmann C and Engele J: Gap junctional control of glial glutamate transporter expression. Mol Cell Neurosci. 35:130–137. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shen N, Mo LQ, Hu F, Chen PX, Guo RX and Feng JQ: A novel role of spinal astrocytic connexin 43: Mediating morphine antinociceptive tolerance by activation of NMDA receptors and inhibition of glutamate transporter-1 in rats. CNS Neurosci Ther. 20:728–736. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huberfeld G and Vecht CJ: Seizures and gliomas-towards a single therapeutic approach. Nat Rev Neurol. 12:204–216. 2016. View Article : Google Scholar : PubMed/NCBI | |
Robel S and Sontheimer H: Glia as drivers of abnormal neuronal activity. Nat Neurosci. 19:28–33. 2016. View Article : Google Scholar : PubMed/NCBI | |
Abakumova T, Abakumov M, Shein S, Chelushkin P, Bychkov D, Mukhin V, Yusubalieva G, Grinenko N, Kabanov A, Nukolova N and Chekhonin V: Connexin 43-targeted T1 contrast agent for MRI, diagnosis of glioma. Contrast Media Mol Imaging. 11:15–23. 2016. View Article : Google Scholar : PubMed/NCBI | |
Iusubalieva GM, Zorkina IaA, Baklaushev VP, Gurina OI, Goriaĭnov SA, Aleksandrova EV, Zhukov VIu, Savel'eva TA, Potapov AA and Chekhonin VP: Connexin-43 antibodies In Intraoperative diagnosis of experimental poorly differentiated gliomas. Zh Vopr Neirokhir Im N N Burdenko. 78:3–13. 2014.(In Russian). PubMed/NCBI | |
Gielen PR, Aftab Q, Ma N, Chen VC, Hong X, Lozinsky S, Naus CC and Sin WC: Connexin43 confers Temozolomide resistance in human glioma cells by modulating the mitochondrial apoptosis pathway. Neuropharmacology. 75:539–548. 2013. View Article : Google Scholar : PubMed/NCBI | |
Murphy SF, Varghese RT, Lamouille S, Guo S, Pridham KJ, Kanabur P, Osimani AM, Sharma S, Jourdan J, Rodgers CM, et al: Connexin 43 inhibition sensitizes chemoresistant glioblastoma cells to temozolomide. Cancer Res. 76:139–149. 2016. View Article : Google Scholar : PubMed/NCBI | |
Munoz JL, Rodriguez-Cruz V, Greco SJ, Ramkissoon SH, Ligon KL and Rameshwar P: Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor-mediated induction of connexin 43. Cell Death Dis. 5:e11452014. View Article : Google Scholar : PubMed/NCBI | |
Yusubalieva GM, Baklaushev VP, Gurina OI, Zorkina YA, Gubskii IL, Kobyakov GL, Golanov AV, Goryainov SA, Gorlachev GE, Konovalov AN, et al: Treatment of poorly differentiated glioma using a combination of monoclonal antibodies to extracellular connexin-43 fragment, temozolomide, and radiotherapy. Bull Exp Biol Med. 157:510–515. 2014. View Article : Google Scholar : PubMed/NCBI | |
Okolie O, Bago JR, Schmid RS, Irvin DM, Bash RE, Miller CR and Hingtgen SD: Reactive astrocytes potentiate tumor aggressiveness in a murine glioma resection and recurrence model. Neuro Oncol. 18:1622–1633. 2016. View Article : Google Scholar : PubMed/NCBI | |
Theodoric N, Bechberger JF, Naus CC and Sin WC: Role of gap junction protein Connexin43 in astrogliosis induced by brain injury. PLoS One. 7:e473112012. View Article : Google Scholar : PubMed/NCBI |