PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics (Review)
- Authors:
- Hua‑Zhong Ying
- Qin Chen
- Wen‑You Zhang
- Huan‑Huan Zhang
- Yue Ma
- Song‑Zhao Zhang
- Jie Fang
- Chen‑Huan Yu
-
Affiliations: Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China, Department of Clinical Laboratory Medicine, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang 310009, P.R. China - Published online on: September 27, 2017 https://doi.org/10.3892/mmr.2017.7641
- Pages: 7879-7889
-
Copyright: © Ying et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bonder A, Tapper EB and Afdhal NH: Contemporary assessment of hepatic fibrosis. Clin Liver Dis. 19:123–134. 2015. View Article : Google Scholar : PubMed/NCBI | |
Trautwein C, Friedman SL, Schuppan D and Pinzani M: Hepatic fibrosis: Concept to treatment. J Hepatol. 62(1 Suppl): S15–S24. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jacobs F, Wisse E and De Geest B: The role of liver sinusoidal cells in hepatocyte-directed gene transfer. Am J Pathol. 176:14–21. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tacke F and Weiskirchen R: Update on hepatic stellate cells: Pathogenic role in liver fibrosis and novel isolation techniques. Expert Rev Gastroenterol Hepatol. 6:67–80. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yin C, Evason KJ, Asahina K and Stainier DY: Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest. 123:1902–1910. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Baker RD, Bhatia T, Zhu L and Baker SS: Pathogenesis of nonalcoholic steatohepatitis. Cell Mol Life Sci. 73:1969–1987. 2016. View Article : Google Scholar : PubMed/NCBI | |
Robert S, Gicquel T, Bodin A, Lagente V and Boichot E: Characterization of the MMP/TIMP imbalance and collagen production induced by IL-1β or TNF-α release from human hepatic stellate cells. PLoS One. 11:e01531182016. View Article : Google Scholar : PubMed/NCBI | |
Ceccarelli S, Panera N, Mina M, Gnani D, De Stefanis C, Crudele A, Rychlicki C, Petrini S, Bruscalupi G, Agostinelli L, et al: LPS-induced TNF-α factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease. Oncotarget. 6:41434–41452. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shah R, Reyes-Gordillo K, Arellanes-Robledo J, Lechuga CG, Hernández-Nazara Z, Cotty A, Rojkind M and Lakshman MR: TGF-β1 up-regulates the expression of PDGF-β receptor mRNA and induces a delayed PI3K-, AKT- and p70(S6K)-dependent proliferative response in activated hepatic stellate cells. Alcohol Clin Exp Res. 37:1838–1848. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kocabayoglu P, Lade A, Lee YA, Dragomir AC, Sun X, Fiel MI, Thung S, Aloman C, Soriano P, Hoshida Y and Friedman SL: β-PDGF receptor expressed by hepatic stellate cells regulates fibrosis in murine liver injury, but not carcinogenesis. J Hepatol. 63:141–147. 2015. View Article : Google Scholar : PubMed/NCBI | |
Baig MS, Yaqoob U, Cao S, Saqib U and Shah VH: Non-canonical role of matrix metalloprotease (MMP) in activation and migration of hepatic stellate cells (HSCs). Life Sci. 155:155–160. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tang N, Zhang YP, Ying W and Yao XX: Interleukin-1β upregulates matrix metalloproteinase-13 gene expression via c-Jun N-terminal kinase and p38 MAPK pathways in rat hepatic stellate cells. Mol Med Rep. 8:1861–1865. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jain MK, Adams-Huet B, Terekhova D, Kushner LE, Bedimo R, Li X and Holodniy M: Acute and chronic immune biomarker changes during interferon/ribavirin treatment in HIV/HCV co-infected patients. J Viral Hepat. 22:25–36. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bai Q, An J, Wu X, You H, Ma H, Liu T, Gao N and Jia J: HBV promotes the proliferation of hepatic stellate cells via the PDGF-B/PDGFR-β signaling pathway in vitro. Int J Mol Med. 30:1443–1450. 2012. View Article : Google Scholar : PubMed/NCBI | |
Okada H, Honda M, Campbell JS, Sakai Y, Yamashita T, Takebuchi Y, Hada K, Shirasaki T, Takabatake R, Nakamura M, et al: Acyclic retinoid targets platelet-derived growth factor signaling in the prevention of hepatic fibrosis and hepatocellular carcinoma development. Cancer Res. 72:4459–4471. 2012. View Article : Google Scholar : PubMed/NCBI | |
Friedman SL, Wei S and Blaner WS: Retinol release by activated rat hepatic lipocytes: Regulation by Kupffer cell-conditioned medium and PDGF. Am J Physiol. 264:G947–G952. 1993.PubMed/NCBI | |
Breitkopf K, Roeyen Cv, Sawitza I, Wickert L, Floege J and Gressner AM: Expression patterns of PDGF-A, -B, -C and -D and the PDGF-receptors alpha and beta in activated rat hepatic stellate cells (HSC). Cytokine. 31:349–357. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fredriksson L, Li H and Eriksson U: The PDGF family: Four gene products from five dimeric isoforms. Cytokine Growth Factor Rev. 15:197–204. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sarzani R, Arnaldi G and Chobanian AV: Hypertension-induced changes of platelet-derived growth factor receptor expression in rat aorta and heart. Hypertension. 17:888–985. 1991. View Article : Google Scholar : PubMed/NCBI | |
Bergsten E, Uutela M, Li X, Pietras K, Ostman A, Heldin CH, Alitalo K and Eriksson U: PDGF-D is a specific, protease-activated ligand for the PDGF beta-receptor. Nat Cell Biol. 3:512–516. 2001. View Article : Google Scholar : PubMed/NCBI | |
Uutela M, Laurén J, Bergsten E, Li X, Horelli-Kuitunen N, Eriksson U and Alitalo K: Chromosomal location, exon structure, and vascular expression patterns of the human PDGFC and PDGFD genes. Circulation. 103:2242–2247. 2001. View Article : Google Scholar : PubMed/NCBI | |
Liegl B, Leithner A, Bauernhofer T, Windhager R, Guelly C, Regauer S and Beham A: Immunohistochemical and mutational analysis of PDGF and PDGFR in desmoid tumours: Is there a role for tyrosine kinase inhibitors in c-kit-negative desmoid tumours? Histopathology. 49:576–581. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rosenfeld M, Keating A, Bowen-Pope DF, Singer JW and Ross R: Responsiveness of the in vitro hematopoietic microenvironment to platelet-derived growth factor. Leuk Res. 9:427–434. 1985. View Article : Google Scholar : PubMed/NCBI | |
Ogawa S, Ochi T, Shimada H, Inagaki K, Fujita I, Nii A, Moffat MA, Katragadda M, Violand BN, Arch RH and Masferrer JL: Anti-PDGF-B monoclonal antibody reduces liver fibrosis development. Hepatol Res. 40:1128–1141. 2010. View Article : Google Scholar : PubMed/NCBI | |
Park HJ, Kim HG, Wang JH, Choi MK, Han JM, Lee JS and Son CG: Comparison of TGF-β, PDGF, and CTGF in hepatic fibrosis models using DMN, CCl4, and TAA. Drug Chem Toxicol. 39:111–118. 2016.PubMed/NCBI | |
Borkham-Kamphorst E, Meurer SK, Van de Leur E, Haas U, Tihaa L and Weiskirchen R: PDGF-D signaling in portal myofibroblasts and hepatic stellate cells proves identical to PDGF-B via both PDGF receptor type α and β. Cell Signal. 27:1305–1314. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kinnman N, Hultcrantz R, Barbu V, Rey C, Wendum D, Poupon R and Housset C: PDGF-mediated chemoattraction of hepatic stellate cells by bile duct segments in cholestatic liver injury. Lab Invest. 80:697–707. 2000. View Article : Google Scholar : PubMed/NCBI | |
Czochra P, Klopcic B, Meyer E, Herkel J, Garcia-Lazaro JF, Thieringer F, Schirmacher P, Biesterfeld S, Galle PR, Lohse AW and Kanzler S: Liver fibrosis induced by hepatic overexpression of PDGF-B in transgenic mice. J Hepatol. 45:419–428. 2006. View Article : Google Scholar : PubMed/NCBI | |
Twamley-Stein GM, Pepperkok R, Ansorge W and Courtneidge SA: The Src family tyrosine kinases are required for platelet-derived growth factor-mediated signal transduction in NIH 3T3 cells. Proc Natl Acad Sci USA. 90:pp. 7696–7700. 1993; View Article : Google Scholar : PubMed/NCBI | |
Zvibel I, Bar-Zohar D, Kloog Y, Oren R and Reif S: The effect of Ras inhibition on the proliferation, apoptosis and matrix metalloproteases activity in rat hepatic stellate cells. Dig Dis Sci. 53:1048–1053. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fischer AN, Fuchs E, Mikula M, Huber H, Beug H and Mikulits W: PDGF essentially links TGF-beta signaling to nuclear beta-catenin accumulation in hepatocellular carcinoma progression. Oncogene. 26:3395–3405. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bromann PA, Korkaya H, Webb CP, Miller J, Calvin TL and Courtneidge SA: Platelet-derived growth factor stimulates Src-dependent mRNA stabilization of specific early genes in fibroblasts. J Biol Chem. 280:10253–10263. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hennig A, Markwart R, Esparza-Franco MA, Ladds G and Rubio I: Ras activation revisited: Role of GEF and GAP systems. Biol Chem. 396:831–848. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bera A, Das F, Ghosh-Choudhury N, Li X, Pal S, Gorin Y, Kasinath BS, Abboud HE and Choudhury G Ghosh: A positive feedback loop involving Erk5 and Akt turns on mesangial cell proliferation in response to PDGF. Am J Physiol Cell Physiol. 306:C1089–C1100. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xiong C, Liu X and Meng A: The kinase activity-deficient isoform of the protein araf antagonizes Ras/mitogen-activated protein kinase (Ras/MAPK) signaling in the zebrafish embryo. J Biol Chem. 290:25512–25521. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pan TL, Wang PW, Leu YL, Wu TH and Wu TS: Inhibitory effects of Scutellaria baicalensis extract on hepatic stellate cells through inducing G2/M cell cycle arrest and activating ERK-dependent apoptosis via Bax and caspase pathway. J Ethnopharmacol. 139:829–837. 2012. View Article : Google Scholar : PubMed/NCBI | |
Park JH, Yoon J, Lee KY and Park B: Effects of geniposide on hepatocytes undergoing epithelial-mesenchymal transition in hepatic fibrosis by targeting TGFβ/Smad and ERK-MAPK signaling pathways. Biochimie. 113:26–34. 2015. View Article : Google Scholar : PubMed/NCBI | |
Osman I and Segar L: Pioglitazone, a PPARγ agonist, attenuates PDGF-induced vascular smooth muscle cell proliferation through AMPK-dependent and AMPK-independent inhibition of mTOR/p70S6K and ERK signaling. Biochem Pharmacol. 101:54–70. 2016. View Article : Google Scholar : PubMed/NCBI | |
Margolis B, Zilberstein A, Franks C, Felder S, Kremer S, Ullrich A, Rhee SG, Skorecki K and Schlessinger J: Effect of phospholipase C-gamma overexpression on PDGF-induced second messengers and mitogenesis. Science. 248:607–610. 1990. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee S, Duan F, Kolb MR and Janssen LJ: Platelet derived growth factor-evoked Ca2+ wave and matrix gene expression through phospholipase C in human pulmonary fibroblast. Int J Biochem Cell Biol. 45:1516–1524. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kojima N, Hori M, Murata T, Morizane Y and Ozaki H: Different profiles of Ca2+ responses to endothelin-1 and PDGF in liver myofibroblasts during the process of cell differentiation. Br J Pharmacol. 151:816–827. 2007. View Article : Google Scholar : PubMed/NCBI | |
Benedetti A, Di Sario A, Casini A, Ridolfi F, Bendia E, Pigini P, Tonnini C, D'Ambrosio L, Feliciangeli G, Macarri G and Svegliati-Baroni G: Inhibition of the NA(+)/H(+) exchanger reduces rat hepatic stellate cell activity and liver fibrosis: An in vitro and in vivo study. Gastroenterology. 120:545–556. 2001. View Article : Google Scholar : PubMed/NCBI | |
Di Sario A, Bendia E, Taffetani S, Marzioni M, Candelaresi C, Pigini P, Schindler U, Kleemann HW, Trozzi L, Macarri G and Benedetti A: Selective Na+/H+ exchange inhibition by cariporide reduces liver fibrosis in the rat. Hepatology. 37:256–266. 2003. View Article : Google Scholar : PubMed/NCBI | |
Perkinton MS, Ip JK, Wood GL, Crossthwaite AJ and Williams RJ: Phosphatidylinositol 3-kinase is a central mediator of NMDA receptor signalling to MAP kinase (Erk1/2), Akt/PKB and CREB in striatal neurons. J Neurochem. 80:239–254. 2002. View Article : Google Scholar : PubMed/NCBI | |
Fan H, Ma L, Fan B, Wu J, Yang Z and Wang L: Role of PDGFR-β/PI3K/AKT signaling pathway in PDGF-BB induced myocardial fibrosis in rats. Am J Transl Res. 6:714–723. 2014.PubMed/NCBI | |
Niba ET, Nagaya H, Kanno T, Tsuchiya A, Gotoh A, Tabata C, Kuribayashi K, Nakano T and Nishizaki T: Crosstalk between PI3 kinase/PDK1/Akt/Rac1 and Ras/Raf/MEK/ERK pathways downstream PDGF receptor. Cell Physiol Biochem. 31:905–913. 2013. View Article : Google Scholar : PubMed/NCBI | |
Villarino AV, Kanno Y, Ferdinand JR and O'Shea JJ: Mechanisms of Jak/STAT signaling in immunity and disease. J Immunol. 194:21–27. 2015. View Article : Google Scholar : PubMed/NCBI | |
Matsui F and Meldrum KK: The role of the Janus kinase family/signal transducer and activator of transcription signaling pathway in fibrotic renal disease. J Surg Res. 178:339–345. 2012. View Article : Google Scholar : PubMed/NCBI | |
Neeli I, Liu Z, Dronadula N, Ma ZA and Rao GN: An essential role of the Jak-2/STAT-3/cytosolic phospholipase A(2) axis in platelet-derived growth factor BB-induced vascular smooth muscle cell motility. J Biol Chem. 279:46122–46128. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jiang JX, Mikami K, Venugopal S, Li Y and Török NJ: Apoptotic body engulfment by hepatic stellate cells promotes their survival by the JAK/STAT and Akt/NF-kappaB-dependent pathways. J Hepatol. 51:139–186. 2009. View Article : Google Scholar : PubMed/NCBI | |
Di Sario A, Bendia E, Svegliati-Baroni G, Marzioni M, Ridolfi F, Trozzi L, Ugili L, Saccomanno S, Jezequel AM and Benedetti A: Rearrangement of the cytoskeletal network induced by platelet-derived growth factor in rat hepatic stellate cells: Role of different intracellular signalling pathways. J Hepatol. 36:179–190. 2002. View Article : Google Scholar : PubMed/NCBI | |
Csak T, Bala S, Lippai D, Kodys K, Catalano D, Iracheta-Vellve A and Szabo G: MicroRNA-155 deficiency attenuates liver steatosis and fibrosis without reducing inflammation in a mouse model of steatohepatitis. PLoS One. 10:e01292512015. View Article : Google Scholar : PubMed/NCBI | |
Wei J, Feng L, Li Z, Xu G and Fan X: MicroRNA-21 activates hepatic stellate cells via PTEN/Akt signaling. Biomed Pharmacother. 67:387–392. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kwiecinski M, Elfimova N, Noetel A, Töx U, Steffen HM, Hacker U, Nischt R, Dienes HP and Odenthal M: Expression of platelet-derived growth factor-C and insulin-like growth factor I in hepatic stellate cells is inhibited by miR-29. Lab Invest. 92:978–987. 2012. View Article : Google Scholar : PubMed/NCBI | |
Noetel A, Kwiecinski M, Elfimova N, Huang J and Odenthal M: microRNA are central players in anti- and profibrotic gene regulation during liver fibrosis. Front Physiol. 3:492012. View Article : Google Scholar : PubMed/NCBI | |
Okada H, Honda M, Campbell JS, Takegoshi K, Sakai Y, Yamashita T, Shirasaki T, Takabatake R, Nakamura M, Tanaka T and Kaneko S: Inhibition of microRNA-214 ameliorates hepatic fibrosis and tumor incidence in platelet-derived growth factor C transgenic mice. Cancer Sci. 106:1143–1152. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fu N, Niu X, Wang Y, Du H, Wang B, Du J, Li Y, Wang R, Zhang Y, Zhao S, et al: Role of LncRNA-activated by transforming growth factor beta in the progression of hepatitis C virus-related liver fibrosis. Discov Med. 22:29–42. 2016.PubMed/NCBI | |
Yang JJ, Liu LP, Tao H, Hu W, Shi P, Deng ZY and Li J: MeCP2 silencing of LncRNA H19 controls hepatic stellate cell proliferation by targeting IGF1R. Toxicology 359–360. 1–46. 2016. | |
Yu F, Zheng J, Mao Y, Dong P, Lu Z, Li G, Guo C, Liu Z and Fan X: Long non-coding RNA growth arrest-specific transcript 5 (GAS5) inhibits liver fibrogenesis through a mechanism of competing endogenous RNA. J Biol Chem. 290:28286–28298. 2015. View Article : Google Scholar : PubMed/NCBI | |
Niu X, Fu N, Du J, Wang R, Wang Y, Zhao S, Du H, Wang B, Zhang Y, Sun D and Nan Y: miR-1273g-3p modulates activation and apoptosis of hepatic stellate cells by directly targeting PTEN in HCV-related liver fibrosis. FEBS Lett. 590:2709–2724. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hyun J, Wang S, Kim J, Rao KM, Park SY, Chung I, Ha CS, Kim SW, Yun YH and Jung Y: MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression. Nat Commun. 7:109932016. View Article : Google Scholar : PubMed/NCBI | |
Hao ZM, Fan XB, Li S, Lv YF, Su HQ, Jiang HP and Li HH: Vaccination with platelet-derived growth factor B kinoids inhibits CCl4-induced hepatic fibrosis in mice. J Pharmacol Exp Ther. 342:835–842. 2012. View Article : Google Scholar : PubMed/NCBI | |
Durez P, Vandepapeliere P, Miranda P, Toncheva A, Berman A, Kehler T, Mociran E, Fautrel B, Mariette X, Dhellin O, et al: Therapeutic vaccination with TNF-Kinoid in TNF antagonist-resistant rheumatoid arthritis: A phase II randomized, controlled clinical trial. PLoS One. 9:e1134652014. View Article : Google Scholar : PubMed/NCBI | |
Jing Q, Yin T, Wan Y, Shi H, Luo S, Li M, Zhang H, He H, Liu S, Li H, et al: Interleukin-13 peptide kinoid vaccination attenuates allergic inflammation in a mouse model of asthma. Int J Mol Med. 30:553–560. 2012. View Article : Google Scholar : PubMed/NCBI | |
Delavallée L, Le Buanec H, Bessis N, Assier E, Denys A, Bizzini B, Zagury D and Boissier MC: Early and long-lasting protection from arthritis in tumour necrosis factor alpha (TNFalpha) transgenic mice vaccinated against TNFalpha. Ann Rheum Dis. 67:1332–1338. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gounder MM, Lefkowitz RA, Keohan ML, D'Adamo DR, Hameed M, Antonescu CR, Singer S, Stout K, Ahn L and Maki RG: Activity of Sorafenib against desmoid tumor/deep fibromatosis. Clin Cancer Res. 17:4082–4090. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zahavi T, Lanton T, Divon MS, Salmon A, Peretz T, Galun E, Axelrod JH and Sonnenblick A: Sorafenib treatment during partial hepatectomy reduces tumorgenesis in an inflammation-associated liver cancer model. Oncotarget. 7:4860–4870. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin TsT, Gao DY, Liu YC, Sung YC, Wan D, Liu JY, Chiang T, Wang L and Chen Y: Development and characterization of sorafenib-loaded PLGA nanoparticles for the systemic treatment of liver fibrosis. J Control Release. 221:62–70. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hong F, Chou H, Fiel MI and Friedman SL: Antifibrotic activity of sorafenib in experimental hepatic fibrosis: Refinement of inhibitory targets, dosing, and window of efficacy in vivo. Dig Dis Sci. 58:257–264. 2013.PubMed/NCBI | |
Wang Y, Gao J, Zhang D, Zhang J, Ma J and Jiang H: New insights into the antifibrotic effects of sorafenib on hepatic stellate cells and liver fibrosis. J Hepatol. 53:132–144. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hao H, Zhang D, Shi J, Wang Y, Chen L, Guo Y, Ma J, Jiang X and Jiang H: Sorafenib induces autophagic cell death and apoptosis in hepatic stellate cell through the JNK and Akt signaling pathways. Anticancer Drugs. 27:192–203. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Yang Z, Wang L, Lu Y, Tang B, Miao H, Xu Q and Chen X: Combination of sorafenib and gadolinium chloride (GdCl3) attenuates dimethylnitrosamine(DMN)-induced liver fibrosis in rats. BMC Gastroenterol. 15:1592015. View Article : Google Scholar : PubMed/NCBI | |
Deng YR, Ma HD, Tsuneyama K, Yang W, Wang YH, Lu FT, Liu CH, Liu P, He XS, Diehl AM, et al: STAT3-mediated attenuation of CCl4-induced mouse liver fibrosis by the protein kinase inhibitor sorafenib. J Autoimmun. 46:25–34. 2013. View Article : Google Scholar : PubMed/NCBI | |
Qu K, Huang Z, Lin T, Liu S, Chang H, Yan Z, Zhang H and Liu C: New insight into the anti-liver fibrosis effect of multitargeted tyrosine kinase inhibitors: From molecular target to clinical trials. Front Pharmacol. 6:3002016. View Article : Google Scholar : PubMed/NCBI | |
Karuppagounder SS, Brahmachari S, Lee Y, Dawson VL, Dawson TM and Ko HS: The c-Abl inhibitor, nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson's disease. Sci Rep. 4:48742014. View Article : Google Scholar : PubMed/NCBI | |
Elsherbiny NM, El-Sherbiny M and Said E: Amelioration of experimentally induced diabetic nephropathy and renal damage by nilotinib. J Physiol Biochem. 71:635–648. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shaker ME, Zalata KR, Mehal WZ, Shiha GE and Ibrahim TM: Comparison of imatinib, nilotinib and silymarin in the treatment of carbon tetrachloride-induced hepatic oxidative stress, injury and fibrosis. Toxicol Appl Pharmacol. 252:165–175. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lemos DR, Babaeijandaghi F, Low M, Chang CK, Lee ST, Fiore D, Zhang RH, Natarajan A, Nedospasov SA and Rossi FM: Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med. 21:786–794. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shiha GE, Abu-Elsaad NM, Zalata KR and Ibrahim TM: Tracking anti-fibrotic pathways of nilotinib and imatinib in experimentally induced liver fibrosis: An insight. Clin Exp Pharmacol Physiol. 41:788–797. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shaker ME, Shiha GE and Ibrahim TM: Comparison of early treatment with low doses of nilotinib, imatinib and a clinically relevant dose of silymarin in thioacetamide-induced liver fibrosis. Eur J Pharmacol. 670:593–600. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wang Z, Kwong SQ, Lui EL, Friedman SL, Li FR, Lam RW, Zhang GC, Zhang H and Ye T: Inhibition of PDGF, TGF-β, and Abl signaling and reduction of liver fibrosis by the small molecule Bcr-Abl tyrosine kinase antagonist Nilotinib. J Hepatol. 55:612–625. 2011. View Article : Google Scholar : PubMed/NCBI | |
Moawad EY: Predicting effectiveness of imatinib mesylate in tumors expressing platelet-derived growthfactors (PDGF-AA, PDGF-BB), stem cell factor ligands and their respective receptors (PDGFR-α, PDGFR-β, and c-kit). J Gastrointest Cancer. 46:272–283. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kuo WL, Yu MC, Lee JF, Tsai CN, Chen TC and Chen MF: Imatinib mesylate improves liver regeneration and attenuates liver fibrogenesis in CCL4-treated mice. J Gastrointest Surg. 16:361–369. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim Y, Fiel MI, Albanis E, Chou HI, Zhang W, Khitrov G and Friedman SL: Anti-fibrotic activity and enhanced interleukin-6 production by hepatic stellate cells in response to imatinib mesylate. Liver Int. 32:1008–1017. 2012. View Article : Google Scholar : PubMed/NCBI | |
Iwamoto H, Nakamuta M, Tada S, Sugimoto R, Enjoji M and Nawata H: Platelet-derived growth factor receptor tyrosine kinase inhibitor AG1295 attenuates rat hepatic stellate cell growth. J Lab Clin Med. 135:406–412. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hutson TE, Davis ID, Machiels JP, De Souza PL, Rottey S, Hong BF, Epstein RJ, Baker KL, McCann L, Crofts T, et al: Efficacy and safety of pazopanib in patients with metastatic renal cell carcinoma. J Clin Oncol. 28:475–480. 2010. View Article : Google Scholar : PubMed/NCBI | |
Eisen T, Joensuu H, Nathan PD, Harper PG, Wojtukiewicz MZ, Nicholson S, Bahl A, Tomczak P, Pyrhonen S, Fife K, et al: Regorafenib for patients with previously untreated metastatic or unresectable renal-cell carcinoma: A single-group phase 2 trial. Lancet Oncol. 13:1055–1062. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rice AB, Moomaw CR, Morgan DL and Bonner JC: Specific inhibitors of platelet-derived growth factor or epidermal growth factor receptor tyrosine kinase reduce pulmonary fibrosis in rats. Am J Pathol. 155:213–221. 1999. View Article : Google Scholar : PubMed/NCBI | |
Venè R, Tosetti F, Minghelli S, Poggi A, Ferrari N and Benelli R: Celecoxib increases EGF signaling in colon tumor associated fibroblasts, modulating EGFR expression and degradation. Oncotarget. 6:12310–12325. 2015. View Article : Google Scholar : PubMed/NCBI | |
Soininen H, West C, Robbins J and Niculescu L: Long-term efficacy and safety of celecoxib in Alzheimer's disease. Dement Geriatr Cogn Disord. 23:8–21. 2007. View Article : Google Scholar : PubMed/NCBI | |
Raval M, Frank PG, Laury-Kleintop L, Yan G and Lanza-Jacoby S: combined with atorvastatin prevents progression of atherosclerosis. J Surg Res. 163:e113–e122. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gao JH, Wen SL, Yang WJ, Lu YY, Tong H, Huang ZY, Liu ZX and Tang CW: Celecoxib ameliorates portal hypertension of the cirrhotic rats through the dual inhibitory effects on the intrahepatic fibrosis and angiogenesis. PLoS One. 8:e693092013. View Article : Google Scholar : PubMed/NCBI | |
Paik YH, Kim JK, Lee JI, Kang SH, Kim DY, An SH, Lee SJ, Lee DK, Han KH, Chon CY, et al: Celecoxib induces hepatic stellate cell apoptosis through inhibition of Akt activation and suppresses hepatic fibrosis in rats. Gut. 58:1517–1527. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ekor M, Odewabi AO, Kale OE, Adesanoye OA and Bamidele TO: Celecoxib, a selective cyclooxygenase-2 inhibitor, lowers plasma cholesterol and attenuates hepatic lipid peroxidation during carbon-tetrachloride-associated hepatotoxicity in rats. Drug Chem Toxicol. 36:1–8. 2013. View Article : Google Scholar : PubMed/NCBI | |
Reina M and Martínez A: Is Silybin the best free radical scavenger compound in Silymarin? J Phys Chem B. 120:4568–4578. 2016. View Article : Google Scholar : PubMed/NCBI | |
Trappoliere M, Caligiuri A, Schmid M, Bertolani C, Failli P, Vizzutti F, Novo E, di Manzano C, Marra F, Loguercio C and Pinzani M: A component of sylimarin, exerts anti-inflammatory and anti-fibrogenic effects on human hepatic stellate cells. J Hepatol. 50:1102–1111. 2009. View Article : Google Scholar : PubMed/NCBI | |
Serviddio G, Bellanti F, Stanca E, Lunetti P, Blonda M, Tamborra R, Siculella L, Vendemiale G, Capobianco L and Giudetti AM: Silybin exerts antioxidant effects and induces mitochondrial biogenesis in liver of rat with secondary biliary cirrhosis. Free Radic Biol Med. 73:117–126. 2014. View Article : Google Scholar : PubMed/NCBI | |
Malaguarnera M, Motta M, Vacante M, Malaguarnera G, Caraci F, Nunnari G, Gagliano C, Greco C, Chisari G, Drago F and Bertino G: Silybin-vitamin E-phospholipids complex reduces liver fibrosis in patients with chronic hepatitis C treated with pegylated interferon α and ribavirin. Am J Transl Res. 7:2510–2518. 2015.PubMed/NCBI | |
Bares JM, Berger J, Nelson JE, Messner DJ, Schildt S, Standish LJ and Kowdley KV: Silybin treatment is associated with reduction in serum ferritin in patients with chronic hepatitis C. J Clin Gastroenterol. 42:937–944. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhou M, Fan C and Tian N: Effects of curcumin on the gene expression profile of L-02 cells. Biomed Rep. 3:519–526. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lian N, Jiang Y, Zhang F, Jin H, Lu C, Wu X, Lu Y and Zheng S: Curcumin regulates cell fate and metabolism by inhibiting hedgehog signaling in hepatic stellate cells. Lab Invest. 95:790–803. 2015. View Article : Google Scholar : PubMed/NCBI | |
Taverna S, Giallombardo M, Pucci M, Flugy A, Manno M, Raccosta S, Rolfo C, De Leo G and Alessandro R: Curcumin inhibits in vitro and in vivo chronic myelogenous leukemia cells growth: A possible role for exosomal disposal of miR-21. Oncotarget. 6:21918–21933. 2015. View Article : Google Scholar : PubMed/NCBI | |
El-Bahr SM: Curcumin regulates gene expression of insulin like growth factor, B-cell CLL/lymphoma 2 and antioxidant enzymes in streptozotocin induced diabetic rats. BMC Complement Altern Med. 13:3682013. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Chen M, Zou P, Kanchana K, Weng Q, Chen W, Zhong P, Ji J, Zhou H, He L and Liang G: Curcumin analog WZ35 induced cell death via ROS-dependent ER stress and G2/M cell cycle arrest in human prostate cancer cells. BMC Cancer. 15:8662015. View Article : Google Scholar : PubMed/NCBI | |
Lee HI, McGregor RA, Choi MS, Seo KI, Jung UJ, Yeo J, Kim MJ and Lee MK: Low doses of curcumin protect alcohol-induced liver damage by modulation of the alcohol metabolic pathway, CYP2E1 and AMPK. Life Sci. 93:693–699. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Ma X, Wang J, He X, Hu Y, Zhang P, Wang R, Li R, Gong M, Luo S and Xiao X: Curcumin protects against CCl4-induced liver fibrosis in rats by inhibiting HIF-1α through an ERK-dependent pathway. Molecules. 19:18767–18780. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xue J, Zhang X, Zhang C, Kang N, Liu X, Yu J, Zhang N, Wang H, Zhang L, Chen R, et al: Protective effect of Naoxintong against cerebral ischemia reperfusion injury in mice. J Ethnopharmacol. 182:181–189. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lv H, Wang L, Shen J, Hao S, Ming A, Wang X, Su F and Zhang Z: Salvianolic acid B attenuates apoptosis and inflammation via SIRT1 activation in experimental stroke rats. Brain Res Bull. 115:30–36. 2015. View Article : Google Scholar : PubMed/NCBI | |
Deng Y, Yang M, Xu F, Zhang Q, Zhao Q, Yu H, Li D, Zhang G, Lu A, Cho K, et al: Combined salvianolic acid B and ginsenoside Rg1 exerts cardioprotection against ischemia/reperfusion injury in rats. PLoS One. 10:e01354352015. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Yu XY, Guo ZY, Wang YJ, Wu Y and Yuan YF: Inhibitory effects of salvianolic acid B on CCl(4)-induced hepatic fibrosis through regulating NF-κB/IκBα signaling. J Ethnopharmacol. 144:592–598. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lv Z, Song Y, Xue D, Zhang W, Cheng Y and Xu L: Effect of salvianolic-acid B on inhibiting MAPK signaling induced by transforming growth factor-β1 in activated rat hepatic stellate cells. J Ethnopharmacol. 132:384–392. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gao HY, Li GY, Lou MM, Li XY, Wei XY and Wang JH: Hepatoprotective effect of matrine salvianolic acid B salt on carbon tetrachloride-induced hepatic fibrosis. J Inflamm (Lond). 9:162012. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Zhou Y, Lu C, Ping J and Xu LM: Salvianolic acid B lowers portal pressure in cirrhotic rats and attenuates contraction of rat hepaticstellate cells by inhibiting RhoA signaling pathway. Lab Invest. 92:1738–1748. 2012. View Article : Google Scholar : PubMed/NCBI | |
Marslin G, Revina AM, Khandelwal VK, Balakumar K, Prakash J, Franklin G and Sheeba CJ: Delivery as nanoparticles reduces imatinib mesylate-induced cardiotoxicity and improves anticancer activity. Int J Nanomedicine. 10:3163–3170. 2015.PubMed/NCBI | |
Younis N, Shaheen MA and Abdallah MH: Silymarin-loaded Eudragit(®) RS100 nanoparticles improved the ability of silymarin to resolve hepatic fibrosis in bile duct ligated rats. Biomed Pharmacother. 81:93–103. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhong H, Wang D, Wang N, Rios Y, Huang H, Li S, Wu X and Lin S: Combinatory action of VEGFR2 and MAP kinase pathways maintains endothelial-cell integrity. Cell Res. 21:1080–1087. 2011. View Article : Google Scholar : PubMed/NCBI | |
Srikanthan A, Ethier JL, Ocana A, Seruga B, Krzyzanowska MK and Amir E: Cardiovascular toxicity of multi-tyrosine kinase inhibitors in advanced solid tumors: A population-based observational study. PLoS One. 10:e01227352015. View Article : Google Scholar : PubMed/NCBI | |
Ghatalia P, Je Y, Mouallem NE, Nguyen PL, Trinh QD, Sonpavde G and Choueiri TK: Hepatotoxicity with vascular endothelial growth factor receptor tyrosine kinase inhibitors: A meta-analysis of randomized clinical trials. Crit Rev Oncol Hematol. 93:257–276. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chrisoulidou A, Mandanas S, Margaritidou E, Mathiopoulou L, Boudina M, Georgopoulos K and Pazaitou-Panayiotou K: Treatment compliance and severe adverse events limit the use of tyrosine kinase inhibitors in refractory thyroid cancer. Onco Targets Ther. 8:2435–2442. 2015.PubMed/NCBI | |
Reichenbach V, Fernández-Varo G, Casals G, Oró D, Ros J, Melgar-Lesmes P, Weiskirchen R, Morales-Ruiz M and Jiménez W: Adenoviral dominant-negative soluble PDGFRβ improves hepatic collagen, systemic hemodynamics, and portal pressure in fibrotic rats. J Hepatol. 57:967–973. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shah R, Reyes-Gordillo K, Arellanes-Robledo J, Lechuga CG, Hernández-Nazara Z, Cotty A, Rojkind M and Lakshman MR: TGF-β1 up-regulates the expression of PDGF-β receptor mRNA and induces a delayed PI3K-, AKT- and p70(S6K)-dependent proliferative response in activated hepatic stellate cells. Alcohol Clin Exp Res. 37:1838–1848. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bai Q, An J, Wu X, You H, Ma H, Liu T, Gao N and Jia J: HBV promotes the proliferation of hepatic stellate cells via the PDGF-B/PDGFR-β signaling pathway in vitro. Int J Mol Med. 30:1443–1450. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liang CC, Liu CH, Chung CS, Lin CK, Su TH, Yang HC, Liu CJ, Chen PJ, Chen DS and Kao JH: Advanced hepatic fibrosis and steatosis are associated with persistent alanine aminotransferase elevation in chronic hepatitis C patients negative for hepatitis C virus RNA during pegylated interferon plus ribavirin therapy. J Infect Dis. 211:1429–1436. 2015. View Article : Google Scholar : PubMed/NCBI |