1
|
Roman LJ, Martásek P and Masters BS:
Intrinsic and extrinsic modulation of nitric oxide synthase
activity. Chem Rev. 102:1179–1190. 2002. View Article : Google Scholar : PubMed/NCBI
|
2
|
Stuehr DJ, Kwon NS, Nathan CF, Griffith
OW, Feldman PL and Wiseman J: N omega-hydroxy-L-arginine is an
intermediate in the biosynthesis of nitric oxide from L-arginine. J
Biol Chem. 266:6259–6263. 1991.PubMed/NCBI
|
3
|
Bredt DS, Hwang PM, Glatt CE, Lowenstein
C, Reed RR and Snyder SH: Cloned and expressed nitric oxide
synthase structurally resembles cytochrome P-450 reductase. Nature.
351:714–718. 1991. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Lamas S, Marsden PA, Li GK, Tempst P and
Michel T: Endothelial nitric oxide synthase: Molecular cloning and
characterization of a distinct constitutive enzyme isoform. Proc
Natl Acad Sci USA. 89:pp. 6348–6352. 1992; View Article : Google Scholar : PubMed/NCBI
|
5
|
Klatt P, Schmidt K, Uray G and Mayer B:
Multiple catalytic functions of brain nitric oxide synthase.
Biochemical characterization, cofactor-requirement and the role of
N omega-hydroxy-L-arginine as an intermediate. J Biol Chem.
268:14781–14787. 1993.PubMed/NCBI
|
6
|
Moncada S and Higgs EA: The discovery of
nitric oxide and its role in vascular biology. Br J Pharmacol. 147
Suppl 1:S193–S201. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Schmidt HH, Smith RM, Nakane M and Murad
F: Ca2+/calmodulin-dependent NO synthase type I: A
biopteroflavoprotein with Ca2+/calmodulin-independent diaphorase
and reductase activities. Biochemistry. 31:3243–3249. 1992.
View Article : Google Scholar : PubMed/NCBI
|
8
|
McMillan K, Bredt DS, Hirsch DJ, Snyder
SH, Clark JE and Masters BS: Cloned, expressed rat cerebellar
nitric oxide synthase contains stoichiometric amounts of heme,
which binds carbon monoxide. Proc Natl Acad Sci USA. 89:pp.
11141–11145. 1992; View Article : Google Scholar : PubMed/NCBI
|
9
|
Feng C, Taiakina V, Ghosh DK, Guillemette
JG and Tollin G: Intraprotein electron transfer between the FMN and
heme domains in endothelial nitric oxide synthase holoenzyme.
Biochim Biophys Acta. 1814:1997–2002. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rozhkova EA, Fujimoto N, Sagami I, Daff SN
and Shimizu T: Interactions between the isolated oxygenase and
reductase domains of neuronal nitric-oxide synthase: Assessing the
role of calmodulin. J Biol Chem. 277:16888–16894. 2002. View Article : Google Scholar : PubMed/NCBI
|
11
|
Daff S, Noble MA, Craig DH, Rivers SL,
Chapman SK, Munro AW, Fujiwara S, Rozhkova E, Sagami I and Shimizu
T: Control of electron transfer in neuronal NO synthase. Biochem
Soc Trans. 29:147–152. 2001. View Article : Google Scholar : PubMed/NCBI
|
12
|
Roman LJ, Miller RT, de La Garza MA, Kim
JJ and Masters BS Siler: The C terminus of mouse macrophage
inducible nitric-oxide synthase attenuates electron flow through
the flavin domain. J Biol Chem. 275:21914–21919. 2000. View Article : Google Scholar : PubMed/NCBI
|
13
|
Roman LJ, Martásek P, Miller RT, Harris
DE, de La Garza MA, Shea TM, Kim JJ and Masters BS Siler: The C
termini of constitutive nitric-oxide synthases control electron
flow through the flavin and heme domains and affect modulation by
calmodulin. J Biol Chem. 275:29225–29232. 2000. View Article : Google Scholar : PubMed/NCBI
|
14
|
Alderton WK, Cooper CE and Knowles RG:
Nitric oxide synthases: Structure, function and inhibition. Biochem
J. 357:593–615. 2001. View Article : Google Scholar : PubMed/NCBI
|
15
|
Salerno JC, Harris DE, Irizarry K, Patel
B, Morales AJ, Smith SM, Martasek P, Roman LJ, Masters BS, Jones
CL, et al: An autoinhibitory control element defines
calcium-regulated isoforms of nitric oxide synthase. J Biol Chem.
272:29769–29777. 1997. View Article : Google Scholar : PubMed/NCBI
|
16
|
Nishida CR and de Montellano PR: Control
of electron transfer in nitric-oxide synthases. Swapping of
autoinhibitory elements among nitric-oxide synthase isoforms. J
Biol Chem. 276:20116–20124. 2001. View Article : Google Scholar : PubMed/NCBI
|
17
|
Daff S, Sagami I and Shimizu T: The
42-amino acid insert in the FMN domain of neuronal nitric-oxide
synthase exerts control over Ca(2+)/calmodulin-dependent electron
transfer. J Biol Chem. 274:30589–30595. 1999. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang J, Martàsek P, Paschke R, Shea T,
Masters BS Siler and Kim JJ: Crystal structure of the
FAD/NADPH-binding domain of rat neuronal nitric-oxide synthase.
Comparisons with NADPH-cytochrome P450 oxidoreductase. J Biol Chem.
276:37506–37513. 2001. View Article : Google Scholar : PubMed/NCBI
|
19
|
Matsuda H and Iyanagi T: Calmodulin
activates intramolecular electron transfer between the two flavins
of neuronal nitric oxide synthase flavin domain. Biochim Biophys
Acta. 1473:345–355. 1999. View Article : Google Scholar : PubMed/NCBI
|
20
|
Guan ZW and Iyanagi T: Electron transfer
is activated by calmodulin in the flavin domain of human neuronal
nitric oxide synthase. Arch Biochem Biophys. 412:65–76. 2003.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Guan ZW, Kamatani D, Kimura S and Iyanagi
T: Mechanistic studies on the intramolecular one-electron transfer
between the two flavins in the human neuronal nitric-oxide synthase
and inducible nitric-oxide synthase flavin domains. J Biol Chem.
278:30859–30868. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Gruez A, Pignol D, Zeghouf M, Covès J,
Fontecave M, Ferrer JL and Fontecilla-Camps JC: Four crystal
structures of the 60 kDa flavoprotein monomer of the sulfite
reductase indicate a disordered flavodoxin-like module. J Mol Biol.
299:199–212. 2000. View Article : Google Scholar : PubMed/NCBI
|
23
|
Adak S, Ghosh S, Abu-Soud HM and Stuehr
DJ: Role of reductase domain cluster 1 acidic residues in neuronal
nitric-oxide synthase. Characterization of the FMN-FREE enzyme. J
Biol Chem. 274:22313–22320. 1999. View Article : Google Scholar : PubMed/NCBI
|
24
|
Andrew PJ and Mayer B: Enzymatic function
of nitric oxide synthases. Cardiovasc Res. 43:521–531. 1999.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Adak S, Aulak KS and Stuehr DJ: Chimeras
of nitric-oxide synthase types I and III establish fundamental
correlates between heme reduction, heme-NO complex formation, and
catalytic activity. J Biol Chem. 276:23246–23252. 2001. View Article : Google Scholar : PubMed/NCBI
|
26
|
Nishida CR and de Montellano PR Ortiz:
Electron transfer and catalytic activity of nitric oxide synthases.
Chimeric constructs of the neuronal, inducible, and endothelial
isoforms. J Biol Chem. 273:5566–5571. 1998. View Article : Google Scholar : PubMed/NCBI
|
27
|
Abu-Soud HM, Ichimori K, Presta A and
Stuehr DJ: Electron transfer, oxygen binding, and nitric oxide
feedback inhibition in endothelial nitric-oxide synthase. J Biol
Chem. 275:17349–17357. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Newman E, Spratt DE, Mosher J, Cheyne B,
Montgomery HJ, Wilson DL, Weinberg JB, Smith SM, Salerno JC, Ghosh
DK and Guillemette JG: Differential activation of nitric-oxide
synthase isozymes by calmodulin-troponin C chimeras. J Biol Chem.
279:33547–33557. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Montgomery HJ, Perdicakis B, Fishlock D,
Lajoie GA, Jervis E and Guy Guillemette J: Photo-control of nitric
oxide synthase activity using a caged isoform specific inhibitor.
Bioorg Med Chem. 10:1919–1927. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Dvorakova M and Landa P: Anti-inflammatory
activity of natural stilbenoids: A review. Pharmacol Res.
124:126–145. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
da Silva, Leal VM, Bonassoli VT, Soares
LM, Milani H and de Oliveira RMW: Depletion of 5 hydroxy-triptamine
(5-HT) affects the antidepressant-like effect of neuronal nitric
oxide synthase inhibitor in mice. Neurosci Lett. 656:131–137. 2017.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Wang ZQ, Haque MM, Binder K, Sharma M, Wei
CC and Stuehr DJ: Engineering nitric oxide synthase chimeras to
function as NO dioxygenases. J Inorg Biochem. 158:122–130. 2016.
View Article : Google Scholar : PubMed/NCBI
|