1
|
Galichon P and Hertig A: Epithelial to
mesenchymal transition as a biomarker in renal fibrosis: Are we
ready for the bedside? Fibrogenesis Tissue Repair. 4:112011.
View Article : Google Scholar : PubMed/NCBI
|
2
|
He J, Xu Y, Koya D and Kanasaki K: Role of
the endothelial-to-mesenchymal transition in renal fibrosis of
chronic kidney disease. Clin Exp Nephrol. 17:488–497. 2013.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Carew RM, Wang B and Kantharidis P: The
role of EMT in renal fibrosis. Cell Tissue Res. 347:103–116. 2012.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Liu Y: Renal fibrosis: New insights into
the pathogenesis and therapeutics. Kidney Int. 69:213–217. 2006.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Allison SJ: Fibrosis: Targeting EMT to
reverse renal fibrosis. Nat Rev Nephrol. 11:5652015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zha D, Cheng H, Li W, Wu Y, Li X, Zhang L,
Feng YH and Wu X: High glucose instigates tubulointerstitial injury
by stimulating hetero-dimerization of adiponectin and angiotensin
II receptors. Biochem Biophys Res Commun: pii:
S0006-291X(17)31600-5. 2017. View Article : Google Scholar
|
7
|
Wahl P, Ducasa GM and Fornoni A: Systemic
and renal lipids in kidney disease development and progression. Am
J Physiol Renal Physiol. 310:F433–F445. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cuenca-Sánchez M, Navas-Carrillo D and
Orenes-Piñero E: Controversies surrounding high-protein diet
intake: Satiating effect and kidney and bone health. Adv Nutr.
6:260–266. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Noone D and Licht C: Chronic kidney
disease: A new look at pathogenetic mechanisms and treatment
options. Pediatr Nephrol. 29:779–792. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lee HS and Song CY: Oxidized low-density
lipoprotein and oxidative stress in the development of
glomerulosclerosis. Am J Nephrol. 29:62–70. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lee HS, Kim BC, Kim YS, Choi KH and Chung
HK: Involvement of oxidation in LDL-induced collagen gene
regulation in mesangial cells. Kidney Int. 50:1582–1590. 1996.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Kurukulasuriya Romayne L, Athappan G, Saab
G, Connell Whaley A and Sowers JR: HMG CoA reductase inhibitors and
renoprotection: The weight of the evidence. Ther Adv Cardiovasc
Dis. 1:49–59. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sawamura T, Kume N, Aoyama T, Moriwaki H,
Hoshikawa H, Aiba Y, Tanaka T, Miwa S, Katsura Y, Kita T and Masaki
T: An endothelial receptor for oxidized low-density lipoprotein.
Nature. 386:73–77. 1997. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Hu C, Kang BY, Megyesi J, Kaushal GP,
Safirstein RL and Mehta JL: Deletion of LOX-1 attenuates renal
injury following angiotensin II infusion. Kidney Int. 76:521–527.
2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kelly KJ, Wu P, Patterson CE, Temm C and
Dominguez JH: LOX-1 and inflammation: A new mechanism for renal
injury in obesity and diabetes. Am J Physiol Renal Physiol.
294:F1136–F1145. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yang L, Wu L, Du S, Hu Y, Fan Y and Ma J:
1,25(OH)2D3 inhibits high glucose-induced apoptosis and ROS
production in human peritoneal mesothelial cells via the MAPK/P38
pathway. Mol Med Rep. 14:839–844. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Pinto M, Pickrell AM, Wang X, Bacman SR,
Yu A, Hida A, Dillon LM, Morton PD, Malek TR, Williams SL and
Moraes CT: Transient mitochondrial DNA double strand breaks in mice
cause accelerated aging phenotypes in a ROS-dependent but
p53/p21-independent manner. Cell Death Differ. 24:288–299. 2017.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Lan X, Lederman R, Eng JM, Shoshtari SS,
Saleem MA, Malhotra A and Singhal PC: Nicotine induces podocyte
apoptosis through increasing oxidative stress. PLoS One.
11:e01670712016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Guo Y, Han B, Luo K, Ren Z, Cai L and Sun
L: NOX2-ROS-HIF-1a signaling is critical for the inhibitory effect
of oleanolic acid on rectal cancer cell proliferation. Biomed
Pharmacother. 85:733–739. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Rhyu DY, Yang Y, Ha H, Lee GT, Song JS, Uh
ST and Lee HB: Role of reactive oxygen species in TGF-beta1-induced
mitogen-activated protein kinase activation and
epithelial-mesenchymal transition in renal tubular epithelial
cells. J Am Soc Nephrol. 16:667–675. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
He T, Guan X, Wang S, Xiao T, Yang K, Xu
X, Wang J and Zhao J: Resveratrol prevents high glucose-induced
epithelial-mesenchymal transition in renal tubular epithelial cells
by inhibiting NADPH oxidase/ROS/ERK pathway. Mol Cell Endocrinol.
402:13–20. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Jha JC, Thallas-Bonke V, Banal C, Gray SP,
Chow BS, Ramm G, Quaggin SE, Cooper ME, Schmidt HH and
Jandeleit-Dahm KA: Podocyte-specific Nox4 deletion affords
renoprotection in a mouse model of diabetic nephropathy.
Diabetologia. 59:379–389. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Duan SB, Liu GL, Wang YH and Zhang JJ:
Epithelial-to-mesenchymal transdifferentiation of renal tubular
epithelial cell mediated by oxidative stress and intervention
effect of probucol in diabetic nephropathy rats. Ren Fail.
34:1244–1251. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ni J, Ma KL, Wang CX, Liu J, Zhang Y, Lv
LL, Ni HF, Chen YX, Ruan XZ and Liu BC: Activation of
renin-angiotensin system is involved in dyslipidemia-mediated renal
injuries in apolipoprotein E knockout mice and HK-2 cells. Lipids
Health Dis. 12:492013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Eddy AA: Progression in chronic kidney
disease. Adv Chronic Kidney Dis. 12:353–365. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Klahr S, Morrissey J, Hruska K, Wang S and
Chen Q: New approaches to delay the progression of chronic renal
failure. Kidney Int Suppl. S23–S26. 2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhou X, Liu R, Duan S, Huang G, Ye Y and
Kong Y: High glucose enhances oxLDL-induced apoptosis in human
renal proximal tubular epithelial cells largely via inducing
lectin-like ox-LDL receptor-1. Pharmacology. 98:20–28. 2016.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Xu Y, Ruan S, Xie H and Lin J: Role of
LOX-1 in Ang II-induced oxidative functional damage in renal
tubular epithelial cells. Int J Mol Med. 26:679–690. 2010.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Dai Y, Palade P, Wang X, Mercanti F, Ding
Z, Dai D and Mehta JL: High fat diet causes renal fibrosis in
LDLr-null mice through MAPK-NF-κB pathway mediated by Ox-LDL. J
Cardiovasc Pharmacol. 63:158–166. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chang CY, Shen CY, Kang CK, Sher YP, Sheu
WH, Chang CC and Lee TH: Taurine protects HK-2 cells from oxidized
LDL-induced cytotoxicity via the ROS-mediated mitochondrial and
p53-related apoptotic pathways. Toxicol Appl Pharmacol.
279:351–363. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Liu M and Park J, Wu X, Li Y, Tran Q, Mun
K, Lee Y, Hur GM, Wen A and Park J: Shen-Kang protects 5/6
nephrectomized rats against renal injury by reducing oxidative
stress through the MAPK signaling pathways. Int J Mol Med.
36:975–984. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wankun X, Wenzhen Y, Min Z, Weiyan Z, Huan
C, Wei D, Lvzhen H, Xu Y and Xiaoxin L: Protective effect of
paeoniflorin against oxidative stress in human retinal pigment
epithelium in vitro. Mol Vis. 17:3512–3522. 2011.PubMed/NCBI
|
33
|
Cao Y, Zhang Y, Wang N and He L:
Antioxidant effect of imperatorin from Angelica dahurica in
hypertension via inhibiting NADPH oxidase activation and MAPK
pathway. J Am Soc Hypertens. 8:527–536. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Li ZJ, Li XM, Piao YJ, Choi DK, Kim SJ,
Kim JW, Sohn KC, Kim CD and Lee JH: Genkwadaphnin induces reactive
oxygen species (ROS)-mediated apoptosis of squamous cell carcinoma
(SCC) cells. Biochem Biophys Res Commun. 450:1115–1119. 2014.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Huang C, Day ML, Poronnik P, Pollock CA
and Chen XM: Inhibition of KCa3.1 suppresses TGF-b1 induced MCP-1
expression in human proximal tubular cells through Smad3, p38 and
ERK1/2 signaling pathways. Int J Biochem Cell Biol. 47:1–10. 2014.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang X, Liang D, Chi ZH, Chu Q, Zhao C,
Ma RZ, Zhao Y and Li H: Effect of zinc on high glucose-induced
epithelial-to-mesenchymal transition in renal tubular epithelial
cells. Int J Mol Med. 35:1747–1754. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Bai YH, Wang JP, Yang M, Zeng Y and Jiang
HY: SiRNA-HMGA2 weakened AGEs-induced epithelial-to-mesenchymal
transition in tubular epithelial cells. Biochem Biophys Res Commun.
457:730–735. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhou L, Xue H, Wang Z, Ni J, Yao T, Huang
Y, Yu C and Lu L: Angiotensin-(1–7) attenuates high glucose-induced
proximal tubular epithelial-to-mesenchymal transition via
inhibiting ERK1/2 and p38 phosphorylation. Life Sci. 90:454–462.
2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wen Q, Huang Z, Zhou SF, Li XY, Luo N and
Yu XQ: Urinary proteins from patients with nephrotic syndrome
alters the signalling proteins regulating epithelial-mesenchymal
transition. Nephrology (Carlton). 15:63–74. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wei J, Shi Y, Hou Y, Ren Y, Du C, Zhang L,
Li Y and Duan H: Knockdown of thioredoxin-interacting protein
ameliorates high glucose-induced epithelial to mesenchymal
transition in renal tubular epithelial cells. Cell Signal.
25:2788–2796. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhou G, Wang Y, He P and Li D: Probucol
inhibited Nox2 expression and attenuated podocyte injury in type 2
diabetic nephropathy of db/db mice. Biol Pharm Bull. 36:1883–1890.
2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Yamashita S, Masuda D and Matsuzawa Y: Did
we abandon probucol too soon? Curr Opin Lipidol. 26:304–316. 2015.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Yamashita S, Hbujo H, Arai H, Harada-Shiba
M, Matsui S, Fukushima M, Saito Y, Kita T and Matsuzawa Y:
Long-term probucol treatment prevents secondary cardiovascular
events: A cohort study of patients with heterozygous familial
hypercholesterolemia in Japan. J Atheroscler Thromb. 15:292–303.
2008. View Article : Google Scholar : PubMed/NCBI
|
44
|
Yamashita S and Matsuzawa Y: Where are we
with probucol: A new life for an old drug? Atherosclerosis.
207:16–23. 2009. View Article : Google Scholar : PubMed/NCBI
|