1
|
Libby P, Ridker PM and Hansson GK:
Progress and challenges in translating the biology of
atherosclerosis. Nature. 473:317–325. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Verweij SL, van der Valk FM and Stroes ES:
Novel directions in inflammation as a therapeutic target in
atherosclerosis. Curr Opin Lipidol. 26:580–585. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Stringa E, Knäuper V, Murphy G and
Gavrilovic J: Collagen degradation and platelet-derived growth
factor stimulate the migration of vascular smooth muscle cells. J
Cell Sci. 113:(Pt 11). 2055–2064. 2000.PubMed/NCBI
|
4
|
Rudijanto A: The role of vascular smooth
muscle cells on the pathogenesis of atherosclerosis. Acta Med
Indones. 39:86–93. 2007.PubMed/NCBI
|
5
|
Zhang J, Zou F, Tang J, Zhang Q, Gong Y,
Wang Q, Shen Y, Xiong L, Breyer RM, Lazarus M, et al:
Cyclooxygenase-2-derived prostaglandin E2 promotes
injury-induced vascular neointimal hyperplasia through the
E-prostanoid 3 receptor. Circ Res. 113:104–114. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Albinsson S and Sessa WC: Can microRNAs
control vascular smooth muscle phenotypic modulation and the
response to injury? Physiol Genomics. 43:529–533. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Robinson HC and Baker AH: How do microRNAs
affect vascular smooth muscle cell biology? Curr Opin Lipidol.
23:405–411. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ning B, Gao L, Liu RH, Liu Y, Zhang NS and
Chen ZY: microRNAs in spinal cord injury: Potential roles and
therapeutic implications. Int J Biol Sci. 10:997–1006. 2014.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Chio CC, Lin JW, Cheng HA, Chiu WT, Wang
YH, Wang JJ, Hsing CH and Chen RM: MicroRNA-210 targets
antiapoptotic Bcl-2 expression and mediates hypoxia-induced
apoptosis of neuroblastoma cells. Arch Toxicol. 87:459–468. 2013.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang L, Zhou M, Wang Y, Huang W, Qin G,
Weintraub NL and Tang Y: miR-92a inhibits vascular smooth muscle
cell apoptosis: Role of the MKK4-JNK pathway. Apoptosis.
19:975–983. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lv H, Zhang Z, Wang Y, Li C, Gong W and
Wang X: MicroRNA-92a promotes colorectal cancer cell growth and
migration by inhibiting KLF4. Oncol Res. 23:283–290. 2016.
View Article : Google Scholar
|
12
|
Rippe C, Blimline M, Magerko KA, Lawson
BR, LaRocca TJ, Donato AJ and Seals DR: MicroRNA changes in human
arterial endothelial cells with senescence: Relation to apoptosis,
eNOS and inflammation. Exp Gerontol. 47:45–51. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lenglet S, Thomas A, Chaurand P, Galan K,
Mach F and Montecucco F: Molecular imaging of matrix
metalloproteinases in atherosclerotic plaques. Thromb Haemost.
107:409–416. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhao B, Luo X, Shi H and Ma D: Tissue
factor pathway inhibitor-2 is downregulated by ox-LDL and inhibits
ox-LDL induced vascular smooth muscle cells proliferation and
migration. Thromb Res. 128:179–185. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Vigetti D, Moretto P, Viola M, Genasetti
A, Rizzi M, Karousou E, Pallotti F, De Luca G and Passi A: Matrix
metalloproteinase 2 and tissue inhibitors of metalloproteinases
regulate human aortic smooth muscle cell migration during in vitro
aging. FASEB J. 20:1118–1130. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chen Q, Jin M, Yang F, Zhu J, Xiao Q and
Zhang L: Matrix metalloproteinases: Inflammatory regulators of cell
behaviors in vascular formation and remodeling. Mediators Inflamm.
2013:9283152013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Halade GV, Jin YF and Lindsey ML: Matrix
metalloproteinase (MMP)-9: A proximal biomarker for cardiac
remodeling and a distal biomarker for inflammation. Pharmacol Ther.
139:32–40. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hobeika MJ, Thompson RW, Muhs BE, Brooks
PC and Gagne PJ: Matrix metalloproteinases in peripheral vascular
disease. J Vasc Surg. 45:849–857. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ha JM, Yun SJ, Jin SY, Lee HS, Kim SJ,
Shin HK and Bae SS: Regulation of vascular smooth muscle phenotype
by cross-regulation of krüppel-like factors. Korean J Physiol
Pharmacol. 21:37–44. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Yu J, Wang L, Yang H, Ding D, Zhang L,
Wang J, Chen Q, Zou Q, Jin Y and Liu X: Rab14 suppression mediated
by MiR-320a Inhibits cell proliferation, migration and invasion in
breast cancer. J Cancer. 7:2317–2326. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Jo DH and Kim JH, Cho CS, Cho YL, Jun HO,
Yu YS, Min JK and Kim JH: STAT3 inhibition suppresses proliferation
of retinoblastoma through down-regulation of positive feedback loop
of STAT3/miR-17-92 clusters. Oncotarget. 5:11513–11525. 2014.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Hammond SM: An overview of microRNAs. Adv
Drug Deliv Rev. 87:3–14. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
McManus DD and Freedman JE: MicroRNAs in
platelet function and cardiovascular disease. Nat Rev Cardiol.
12:711–717. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhou Y, Zhang MJ, Li BH, Chen L, Pi Y, Yin
YW, Long CY, Wang X, Sun MJ, Chen X, et al: PPARγ inhibits VSMC
proliferation and migration via attenuating oxidative stress
through upregulating UCP2. PLoS One. 11:e01547202016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Shi YF, Chi JF, Tang WL, Xu FK, Liu LB, Ji
Z, Lv HT and Guo HY: Effects of rosuvastatin on the production and
activation of matrix metalloproteinase-2 and migration of cultured
rat vascular smooth muscle cells induced by homocysteine. J
Zhejiang Univ Sci B. 14:696–704. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Cardellini M, Menghini R, Martelli E,
Casagrande V, Marino A, Rizza S, Porzio O, Mauriello A, Solini A,
Ippoliti A, et al: TIMP3 is reduced in atherosclerotic plaques from
subjects with type 2 diabetes and increased by SirT1. Diabetes.
58:2396–2401. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ma L and Li Y: SIRT1: Role in
cardiovascular biology. Clin Chim Acta. 440:8–15. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Volkmann I, Kumarswamy R, Pfaff N, Fiedler
J, Dangwal S, Holzmann A, Batkai S, Geffers R, Lother A, Hein L and
Thum T: MicroRNA-mediated epigenetic silencing of sirtuin1
contributes to impaired angiogenic responses. Circ Res.
113:997–1003. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Menghini R, Casagrande V, Cardellini M,
Martelli E, Terrinoni A, Amati F, Vasa-Nicotera M, Ippoliti A,
Novelli G, Melino G, et al: MicroRNA 217 modulates endothelial cell
senescence via silent information regulator 1. Circulation.
120:1524–1532. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kumarswamy R, Volkmann I, Beermann J, Napp
LC, Jabs O, Bhayadia R, Melk A, Ucar A, Chowdhury K, Lorenzen JM,
et al: Vascular importance of the miR-212/132 cluster. Eur Heart J.
35:3224–3231. 2014. View Article : Google Scholar : PubMed/NCBI
|