1
|
Hulsebosch CE: Recent advances in
pathophysiology and treatment of spinal cord injury. Adv Physiol
Educ. 26:238–255. 2002. View Article : Google Scholar : PubMed/NCBI
|
2
|
Penas C, Verdu E, Asensio-Pinilla E,
Guzmán-Lenis MS, Herrando-Grabulosa M, Navarro X and Casas C:
Valproate reduces CHOP levels and preserves oligodendrocytes and
axons after spinal cord injury. Neuroscience. 178:33–44. 2011.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Beaumont E, Whitaker CM, Burke DA, Hetman
M and Onifer SM: Effects of rolipram on adult rat oligodendrocytes
and functional recovery after contusive cervical spinal cord
injury. Neuroscience. 163:985–990. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lee BB, Cripps RA, Fitzharris M and Wing
PC: The global map for traumatic spinal cord injury epidemiology:
Update 2011, global incidence rate. Spinal Cord. 52:110–116. 2014.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Emery E, Aldana P, Bunge MB, Puckett W,
Srinivasan A, Keane RW, Bethea J and Levi AD: Apoptosis after
traumatic human spinal cord injury. J Neurosurg. 89:911–920. 1998.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Bunge RP, Puckett WR, Becerra JL, Marcillo
A and Quencer RM: Observations on the pathology of human spinal
cord injury. A review and classification of 22 new cases with
details from a case of chronic cord compression with extensive
focal demyelination. Adv Neurol. 59:75–89. 1993.PubMed/NCBI
|
7
|
Kakulas BA: A review of the neuropathology
of human spinal cord injury with emphasis on special features. J
Spinal Cord Med. 22:119–124. 1999. View Article : Google Scholar : PubMed/NCBI
|
8
|
Buss A, Brook GA, Kakulas B, Martin D,
Franzen R, Schoenen J, Noth J and Schmitt AB: Gradual loss of
myelin and formation of an astrocytic scar during Wallerian
degeneration in the human spinal cord. Brain. 127:34–44. 2004.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Guest JD, Hiester ED and Bunge RP:
Demyelination and Schwann cell responses adjacent to injury
epicenter cavities following chronic human spinal cord injury. Exp
Neurol. 192:384–393. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Crowe MJ, Bresnahan JC, Shuman SL, Masters
JN and Beattie MS: Apoptosis and delayed degeneration after spinal
cord injury in rats and monkeys. Nat Med. 3:73–76. 1997. View Article : Google Scholar : PubMed/NCBI
|
11
|
Li GL, Farooque M, Holtz A and Olsson Y:
Apoptosis of oligodendrocytes occurs for long distances away from
the primary injury after compression trauma to rat spinal cord.
Acta Neuropathol. 98:473–480. 1999. View Article : Google Scholar : PubMed/NCBI
|
12
|
Shuman SL, Bresnahan JC and Beattie MS:
Apoptosis of microglia and oligodendrocytes after spinal cord
contusion in rats. J Neurosci Res. 50:798–808. 1997. View Article : Google Scholar : PubMed/NCBI
|
13
|
McTigue DM, Wei P and Stokes BT:
Proliferation of NG2-positive cells and altered oligodendrocyte
numbers in the contused rat spinal cord. J Neurosci. 21:3392–3400.
2001.PubMed/NCBI
|
14
|
McEwen ML and Springer JE: A mapping study
of caspase-3 activation following acute spinal cord contusion in
rats. J Histochem Cytochem. 53:809–819. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Casha S, Yu WR and Fehlings MG:
Oligodendroglial apoptosis occurs along degenerating axons and is
associated with FAS and p75 expression following spinal cord injury
in the rat. Neuroscience. 103:203–218. 2001. View Article : Google Scholar : PubMed/NCBI
|
16
|
Grossman SD, Rosenberg LJ and Wrathall JR:
Temporal-spatial pattern of acute neuronal and glial loss after
spinal cord contusion. Exp Neurol. 168:273–282. 2001. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hernández J, Torres-Espin A and Navarro X:
Adult stem cell transplants for spinal cord injury repair: Current
state in preclinical research. Curr Stem Cell Res Ther. 6:273–287.
2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Grabel L: Prospects for pluripotent stem
cell therapies: Into the clinic and back to the bench. J Cell
Biochem. 113:381–387. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Führmann T, Tam RY, Ballarin B, Coles B,
Donaghue Elliott I, van der Kooy D, Nagy A, Tator CH, Morshead CM
and Shoichet MS: Injectable hydrogel promotes early survival of
induced pluripotent stem cell-derived oligodendrocytes and
attenuates longterm teratoma formation in a spinal cord injury
model. Biomaterials. 83:23–36. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
McKerracher L and Winton MJ: Nogo on the
go. Neuron. 36:345–348. 2002. View Article : Google Scholar : PubMed/NCBI
|
21
|
Domeniconi M and Filbin MT: Overcoming
inhibitors in myelin to promote axonal regeneration. J Neurol Sci.
233:43–47. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Faulkner J and Keirstead HS: Human
embryonic stem cell-derived oligodendrocyte progenitors for the
treatment of spinal cord injury. Transpl Immunol. 15:131–142. 2005.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Kuypers NJ, Bankston AN, Howard RM, Beare
JE and Whittemore SR: Remyelinating oligodendrocyte precursor cell
miRNAs from the Sfmbt2 cluster promote cell cycle arrest and
differentiation. J Neurosci. 36:1698–1710. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang HL, Jiang ZS and Wang FW: Analysis
of gene expression profiles associated with functional recovery
after spinal cord injury caused by sema4D knockdown in
oligodendrocytes. Cell Biochem Biophys. 69:655–661. 2014.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Sharp J, Frame J, Siegenthaler M, Nistor G
and Keirstead HS: Human embryonic stem cell-derived oligodendrocyte
progenitor cell transplants improve recovery after cervical spinal
cord injury. Stem Cells. 28:152–163. 2010.PubMed/NCBI
|
26
|
Cao Q, He Q, Wang Y, Cheng X, Howard RM,
Zhang Y, DeVries WH, Shields CB, Magnuson DS, Xu XM, et al:
Transplantation of ciliary neurotrophic factor-expressing adult
oligodendrocyte precursor cells promotes remyelination and
functional recovery after spinal cord injury. J Neurosci.
30:2989–3001. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Zamore PD and Haley B: Ribo-gnome: The big
world of small RNAs. Science. 309:1519–1524. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Liu Z, Sall A and Yang D: MicroRNA: An
emerging therapeutic target and intervention tool. Int J Mol Sci.
9:978–999. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yunta M, Nieto-Diaz M, Esteban FJ,
Caballero-López M, Navarro-Ruiz R, Reigada D, Pita-Thomas DW, del
Águila A, Muñoz-Galdeano T and Maza RM: MicroRNA dysregulation in
the spinal cord following traumatic injury. PLoS One. 7:e345342012.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
33
|
Krichevsky AM: MicroRNA profiling: From
dark matter to white matter, or identifying new players in
neurobiology. ScientificWorldJournal. 7:155–166. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kosik KS: The neuronal microRNA system.
Nat Rev Neurosci. 7:911–920. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Bak M, Silahtaroglu A, Møller M,
Christensen M, Rath MF, Skryabin B, Tommerup N and Kauppinen S:
MicroRNA expression in the adult mouse central nervous system. RNA.
14:432–444. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Miska EA, Alvarez-Saavedra E, Townsend M,
Yoshii A, Sestan N, Rakic P, Constantine-Paton M and Horvitz HR:
Microarray analysis of microRNA expression in the developing
mammalian brain. Genome Biol. 5:R682004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Liu NK, Wang XF, Lu QB and Xu XM: Altered
microRNA expression following traumatic spinal cord injury. Exp
Neurol. 219:424–429. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Strickland ER, Hook MA, Balaraman S, Huie
JR, Grau JW and Miranda RC: MicroRNA dysregulation following spinal
cord contusion: Implications for neural plasticity and repair.
Neuroscience. 186:146–160. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lü HZ, Wang YX, Li Y, Fu SL, Hang Q and Lu
PH: Proliferation and differentiation of oligodendrocyte progenitor
cells induced from rat embryonic neural precursor cells followed by
flow cytometry. Cytometry A. 73:754–760. 2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Basso DM, Beattie MS and Bresnahan JC: A
sensitive and reliable locomotor rating scale for open field
testing in rats. J Neurotrauma. 12:1–21. 1995. View Article : Google Scholar : PubMed/NCBI
|
41
|
Liu R, Zhao W, Zhao Q, Liu SJ, Liu J, He
M, Xu Y, Wang W, Liu W, Xia QJ, et al: Endoplasmic reticulum
protein 29 protects cortical neurons from apoptosis and promoting
corticospinal tract regeneration to improve neural behavior via
caspase and Erk signal in rats with spinal cord transection. Mol
Neurobiol. 50:1035–1048. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Alvarez-Garcia I and Miska EA: MicroRNA
functions in animal development and human disease. Development.
132:4653–4662. 2005. View Article : Google Scholar : PubMed/NCBI
|
44
|
Ozdemir M, Attar A and Kuzu I:
Regenerative treatment in spinal cord injury. Curr Stem Cell Res
Ther. 7:364–369. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhang HL, Wang J and Tang L: Sema4D
knockdown in oligodendrocytes promotes functional recovery after
spinal cord injury. Cell Biochem Biophys. 68:489–496. 2014.
View Article : Google Scholar : PubMed/NCBI
|
46
|
All AH, Bazley FA, Gupta S, Pashai N, Hu
C, Pourmorteza A and Kerr C: Human embryonic stem cell-derived
oligodendrocyte progenitors aid in functional recovery of sensory
pathways following contusive spinal cord injury. PLoS One.
7:e476452012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ding L, Xu Y, Zhang W, Deng Y, Si M, Du Y,
Yao H, Liu X, Ke Y, Si J and Zhou T: MiR-375 frequently
downregulated in gastric cancer inhibits cell proliferation by
targeting JAK2. Cell Res. 20:784–793. 2010. View Article : Google Scholar : PubMed/NCBI
|
48
|
Hu W and Xiao Z: Formononetin induces
apoptosis of human osteosarcoma cell line U2OS by regulating the
expression of Bcl-2, Bax and MiR-375 in vitro and in vivo. Cell
Physiol Biochem. 37:933–939. 2015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Yu X, Zhao W, Yang X, Wang Z and Hao M:
miR-375 affects the proliferation, invasion, and apoptosis of
HPV16-positive human cervical cancer cells by targeting IGF-1R. Int
J Gynecol Cancer. 26:851–858. 2016. View Article : Google Scholar : PubMed/NCBI
|
50
|
Novello C, Pazzaglia L, Cingolani C, Conti
A, Quattrini I, Manara MC, Tognon M, Picci P and Benassi MS: miRNA
expression profile in human osteosarcoma: Role of miR-1 and
miR-133b in proliferation and cell cycle control. Int J Oncol.
42:667–675. 2013. View Article : Google Scholar : PubMed/NCBI
|
51
|
Han C, Zhou Y, An Q, Li F, Li D, Zhang X,
Yu Z, Zheng L, Duan Z and Kan Q: MicroRNA-1 (miR-1) inhibits
gastric cancer cell proliferation and migration by targeting MET.
Tumour Biol. 36:6715–6723. 2015. View Article : Google Scholar : PubMed/NCBI
|
52
|
Shan ZX, Lin QX, Deng CY, Zhu JN, Mai LP,
Liu JL, Fu YH, Liu XY, Li YX, Zhang YY, et al: miR-1/miR-206
regulate Hsp60 expression contributing to glucose-mediated
apoptosis in cardiomyocytes. FEBS Lett. 584:3592–3600. 2010.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Xu Y, Zheng M, Merritt RE, Shrager JB,
Wakelee H, Kratzke RA and Hoang CD: miR-1 induces growth arrest and
apoptosis in malignant mesothelioma. Chest. 144:1632–1643. 2013.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Kang B, Hong J, Xiao J, Zhu X, Ni X, Zhang
Y, He B and Wang Z: Involvement of miR-1 in the protective effect
of hydrogen sulfide against cardiomyocyte apoptosis induced by
ischemia/reperfusion. Mol Biol Rep. 41:6845–6853. 2014. View Article : Google Scholar : PubMed/NCBI
|
55
|
Li Y, Chen D, Li Y, Jin L, Liu J, Su Z, Qi
Z, Shi M, Jiang Z, Ni L, et al: Oncogenic cAMP responsive element
binding protein 1 is overexpressed upon loss of tumor suppressive
miR-10b-5p and miR-363-3p in renal cancer. Oncol Rep. 35:1967–1978.
2016. View Article : Google Scholar : PubMed/NCBI
|
56
|
Zhang PF, Sheng LL, Wang G, Tian M, Zhu
LY, Zhang R, Zhang J and Zhu JS: miR-363 promotes proliferation and
chemo-resistance of human gastric cancer via targeting of FBW7
ubiquitin ligase expression. Oncotarget. 7:35284–35292. 2016.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Hu J, Fang Y, Cao Y, Qin R and Chen Q:
miR-449a Regulates proliferation and chemosensitivity to cisplatin
by targeting cyclin D1 and BCL2 in SGC7901 cells. Dig Dis Sci.
59:336–345. 2014. View Article : Google Scholar : PubMed/NCBI
|
58
|
Ye W, Xue J, Zhang Q, Li F, Zhang W, Chen
H, Huang Y and Zheng F: MiR-449a functions as a tumor suppressor in
endometrial cancer by targeting CDC25A. Oncol Rep. 32:1193–1199.
2014. View Article : Google Scholar : PubMed/NCBI
|
59
|
Yao Y, Ma J, Xue Y, Wang P, Li Z, Li Z, Hu
Y, Shang X and Liu Y: MiR-449a exerts tumor-suppressive functions
in human glioblastoma by targeting Myc-associated zinc-finger
protein. Mol Oncol. 9:640–656. 2015. View Article : Google Scholar : PubMed/NCBI
|
60
|
Liu Y, Wang Y, Sun X, Mei C, Wang L, Li Z
and Zha X: miR-449a promotes liver cancer cell apoptosis by
downregulation of Calpain 6 and POU2F1. Oncotarget. 7:13491–13501.
2016. View Article : Google Scholar : PubMed/NCBI
|