TGF‑β signaling: A complex role in tumorigenesis (Review)
- Authors:
- Shuang Liu
- Shuang Chen
- Jun Zeng
-
Affiliations: Department of Biochemistry and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, P.R. China, Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China - Published online on: November 6, 2017 https://doi.org/10.3892/mmr.2017.7970
- Pages: 699-704
This article is mentioned in:
Abstract
Morris SM, Carter KT, Baek JY, Koszarek A, Yeh MM, Knoblaugh SE and Grady WM: TGF-β signaling alters the pattern of liver tumorigenesis induced by Pten inactivation. Oncogene. 34:3273–3282. 2015. View Article : Google Scholar : PubMed/NCBI | |
Horie Y, Suzuki A, Kataoka E, Sasaki T, Hamada K, Sasaki J, Mizuno K, Hasegawa G, Kishimoto H, Iizuka M, et al: Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest. 113:1774–1783. 2004. View Article : Google Scholar : PubMed/NCBI | |
Attisano L and Wrana JL: Signal integration in TGF-β, WNT, and Hippo pathways. F1000Prime Rep. 5:172013. View Article : Google Scholar : PubMed/NCBI | |
Ikushima H and Miyazono K: TGFbeta signalling: A complex web in cancer progression. Nat Rev Cancer. 10:415–424. 2010. View Article : Google Scholar : PubMed/NCBI | |
Derynck R, Akhurst RJ and Balmain A: TGF-beta signaling in tumor suppression and cancer progression. Nat Genet. 29:117–129. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kiyono K, Suzuki HI, Morishita Y, Komuro A, Iwata C, Yashiro M, Hirakawa K, Kano MR and Miyazono K: c-Ski overexpression promotes tumor growth and angiogenesis through inhibition of transforming growth factor-beta signaling in diffuse-type gastric carcinoma. Cancer Sci. 100:1809–1816. 2009. View Article : Google Scholar : PubMed/NCBI | |
Komuro A, Yashiro M, Iwata C, Morishita Y, Johansson E, Matsumoto Y, Watanabe A, Aburatani H, Miyoshi H, Kiyono K, et al: Diffuse-type gastric carcinoma: Progression, angiogenesis, and transforming growth factor beta signaling. J Natl Cancer Inst. 101:592–604. 2009. View Article : Google Scholar : PubMed/NCBI | |
Roberts AB and Wakefield LM: The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA. 100:8621–8623. 2003. View Article : Google Scholar : PubMed/NCBI | |
Massagué J: TGF-beta signal transduction. Annu Rev Biochem. 67:753–791. 1998. View Article : Google Scholar : PubMed/NCBI | |
Massagué J, Blain SW and Lo RS: TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 103:295–309. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liu T, Tang W, Deng B, Chen Y, Zhu J and Shen X: Hepatocellular carcinoma cells induce regulatory T cells and lead to poor prognosis via production of transforming growth factor-β1. Cell Physiol Biochem. 38:306–318. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shen H, Guan D, Shen J, Wang M, Chen X, Xu T, Liu L and Shu Y: TGF-β1 induces erlotinib resistance in non-small cell lung cancer by down-regulating PTEN. Biomed Pharmacother. 77:1–6. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yoshimoto T, Fujita T, Kajiya M, Matsuda S, Ouhara K, Shiba H and Kurihara H: Involvement of smad2 and Erk/Akt cascade in TGF-β1-induced apoptosis in human gingival epithelial cells. Cytokine. 75:165–173. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dai C, Yang J and Liu Y: Transforming growth factor-beta1 potentiates renal tubular epithelial cell death by a mechanism independent of Smad signaling. J Biol Chem. 278:12537–12545. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lyons RM, Gentry LE, Purchio AF and Moses HL: Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin. J Cell Biol. 110:1361–1367. 1990. View Article : Google Scholar : PubMed/NCBI | |
Andreasen PA, Kjøller L, Christensen L and Duffy MJ: The urokinase-type plasminogen activator system in cancer metastasis: A review. Int J Cancer. 72:1–22. 1997. View Article : Google Scholar : PubMed/NCBI | |
Yu Q and Stamenkovic I: Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 14:163–176. 2000.PubMed/NCBI | |
Mir FA, Contreras-Ruiz L and Masli S: Thrombospondin-1-dependent immune regulation by transforming growth factor-β2-exposed antigen-presenting cells. Immunology. 146:547–556. 2015. View Article : Google Scholar : PubMed/NCBI | |
Murphy-Ullrich JE and Poczatek M: Activation of latent TGF-beta by thrombospondin-1: Mechanisms and physiology. Cytokine Growth Factor Rev. 11:59–69. 2000. View Article : Google Scholar : PubMed/NCBI | |
Dutta A, Li J, Fedele C, Sayeed A, Singh A, Violette SM, Manes TD and Languino LR: αvβ6 integrin is required for TGFβ1-mediated matrix metalloproteinase2 expression. Biochem J. 466:525–536. 2015. View Article : Google Scholar : PubMed/NCBI | |
Feng XH and Derynck R: Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol. 21:659–693. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shi Y and Massagué J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 113:685–700. 2003. View Article : Google Scholar : PubMed/NCBI | |
Heldin CH, Miyazono K and ten Dijke P: TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 390:465–471. 1997. View Article : Google Scholar : PubMed/NCBI | |
Park S, Jung HH, Park YH, Ahn JS and Im YH: ERK/MAPK pathways play critical roles in EGFR ligands-induced MMP1 expression. Biochem Biophys Res Commun. 407:680–686. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cheng X, Gao W, Dang Y, Liu X, Li Y, Peng X and Ye X: Both ERK/MAPK and TGF-Beta/Smad signaling pathways play a role in the kidney fibrosis of diabetic mice accelerated by blood glucose fluctuation. J Diabetes Res. 2013:4637402013. View Article : Google Scholar : PubMed/NCBI | |
Yu JS, Ramasamy TS, Murphy N, Holt MK, Czapiewski R, Wei SK and Cui W: PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation. Nat Commun. 6:72122015. View Article : Google Scholar : PubMed/NCBI | |
Vo BT, Morton D Jr, Komaragiri S, Millena AC, Leath C and Khan SA: TGF-β effects on prostate cancer cell migration and invasion are mediated by PGE2 through activation of PI3K/AKT/mTOR pathway. Endocrinology. 154:1768–1779. 2013. View Article : Google Scholar : PubMed/NCBI | |
Singha PK, Pandeswara S, Geng H, Lan R, Venkatachalam MA and Saikumar P: TGF-β induced TMEPAI/PMEPA1 inhibits canonical Smad signaling through R-Smad sequestration and promotes non-canonical PI3K/Akt signaling by reducing PTEN in triple negative breast cancer. Genes Cancer. 5:320–336. 2014.PubMed/NCBI | |
Reduced beta 2 glycoprotein I improve diabetic nephropathy via inhibiting TGF-β1-p38 MAPK pathway [Retraction]. Int J Clin Exp Med. 8:197922015.PubMed/NCBI | |
Chen IT, Hsu PH, Hsu WC, Chen NJ and Tseng PH: Polyubiquitination of transforming growth factor β-activated Kinase 1 (TAK1) at lysine 562 residue regulates TLR4-mediated JNK and p38 MAPK activation. Sci Rep. 5:123002015. View Article : Google Scholar : PubMed/NCBI | |
Suzuki T, Dai P, Hatakeyama T, Harada Y, Tanaka H, Yoshimura N and Takamatsu T: TGF-β signaling regulates pancreatic β-Cell proliferation through control of cell cycle regulator p27 expression. Acta Histochem Cytochem. 46:51–58. 2013. View Article : Google Scholar : PubMed/NCBI | |
Senturk S, Mumcuoglu M, Gursoy-Yuzugullu O, Cingoz B, Akcali KC and Ozturk M: Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Hepatology. 52:966–974. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wu J, Lin B, Li X, Zhang H, Ding H, Chen X, Lan L and Luo H: Galangin suppresses HepG2 cell proliferation by activating the TGF-β receptor/Smad pathway. Toxicology. 326:9–17. 2014. View Article : Google Scholar : PubMed/NCBI | |
Guo C, Liu S, Dong P, Zhao D, Wang C, Tao Z and Sun MZ: Akbu-LAAO exhibits potent anti-tumor activity to HepG2 cells partially through produced H2O2 via TGF-β signal pathway. Sci Rep. 5:182152015. View Article : Google Scholar : PubMed/NCBI | |
Cheng L, Zhang C, Li D, Zou J and Wang J: Transforming growth factor-β1 (TGF-β1) induces mouse precartilaginous stem cell proliferation through TGF-β receptor II (TGFRII)-Akt-β-catenin signaling. Int J Mol Sci. 15:12665–12676. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kudo-Saito C, Shirako H, Takeuchi T and Kawakami Y: Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell. 15:195–206. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hay ED: An overview of epithelio-mesenchymal transformation. Acta Anat (Basel). 154:8–20. 1995. View Article : Google Scholar : PubMed/NCBI | |
Muthusamy BP, Budi EH, Katsuno Y, Lee MK, Smith SM, Mirza AM, Akhurst RJ and Derynck R: ShcA protects against epithelial-mesenchymal transition through compartmentalized inhibition of TGF-β-Induced Smad activation. PLoS Biol. 13:e10023252015. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Lamouille S and Derynck R: TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 19:156–172. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee JY, Chang JW, Yang WS, Kim SB, Park SK, Park JS and Lee SK: Albumin-induced epithelial-mesenchymal transition and ER stress are regulated through a common ROS-c-Src kinase-mTOR pathway: Effect of imatinib mesylate. Am J Physiol Renal Physiol. 300:F1214–1222. 2011. View Article : Google Scholar : PubMed/NCBI | |
Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR and Massagué J: TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 133:66–77. 2008. View Article : Google Scholar : PubMed/NCBI | |
Naka K: TGF-β signaling in cancer stem cells. Nihon Rinsho. 73:784–789. 2015.(In Japanese). PubMed/NCBI | |
You H, Ding W and Rountree CB: Epigenetic regulation of cancer stem cell marker CD133 by transforming growth factor-beta. Hepatology. 51:1635–1644. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chanmee T, Ontong P, Mochizuki N, Kongtawelert P, Konno K and Itano N: Excessive hyaluronan production promotes acquisition of cancer stem cell signatures through the coordinated regulation of Twist and the transforming growth factor β (TGF-β)-Snail signaling axis. J Biol Chem. 289:26038–26056. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fan QM, Jing YY, Yu GF, Kou XR, Ye F, Gao L, Li R, Zhao QD, Yang Y, Lu ZH and Wei LX: Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett. 352:160–168. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yu D, Shin HS, Lee YS and Lee YC: miR-106b modulates cancer stem cell characteristics through TGF-β/Smad signaling in CD44-positive gastric cancer cells. Lab Invest. 94:1370–1381. 2014. View Article : Google Scholar : PubMed/NCBI | |
El Helou R, Wicinski J, Guille A, Adélaïde J, Finetti P, Bertucci F, Chaffanet M, Birnbaum D, Charafe-Jauffret E and Ginestier C: Brief reports: A distinct DNA methylation signature defines breast cancer stem cells and predicts cancer outcome. Stem Cells. 32:3031–3036. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Shao N, Ding X, Tan B, Song Q, Wang N, Jia Y, Ling H and Cheng Y: Crosstalk between transforming growth factor-β signaling pathway and long non-coding RNAs in cancer. Cancer Lett. 370:296–301. 2016. View Article : Google Scholar : PubMed/NCBI | |
Martin M and Herceg Z: From hepatitis to hepatocellular carcinoma: A proposed model for cross-talk between inflammation and epigenetic mechanisms. Genome Med. 4:82012. View Article : Google Scholar : PubMed/NCBI | |
Hernandez-Gea V, Toffanin S, Friedman SL and Llovet JM: Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology. 144:512–527. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nana AW, Yang PM and Lin HY: Overview of transforming growth factor β superfamily involvement in glioblastoma initiation and progression. Asian Pac J Cancer Prev. 16:6813–6823. 2015. View Article : Google Scholar : PubMed/NCBI | |
Neuzillet C, de Gramont A, Tijeras-Raballand A, de Mestier L, Cros J, Faivre S and Raymond E: Perspectives of TGF-β inhibition in pancreatic and hepatocellular carcinomas. Oncotarget. 5:78–94. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Pang Y and Moses HL: TGF-beta and immune cells: An important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 31:220–227. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang L: TGFbeta, a potent regulator of tumor microenvironment and host immune response, implication for therapy. Curr Mol Med. 10:374–380. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Yao Y, Gong C, Yu F, Su S, Chen J, Liu B, Deng H, Wang F, Lin L, et al: CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell. 19:541–555. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pittet MJ: Behavior of immune players in the tumor microenvironment. Curr Opin Oncol. 21:53–59. 2009. View Article : Google Scholar : PubMed/NCBI | |
Condeelis J and Pollard JW: Macrophages: obligate partners for tumor cell migration, invasion and metastasis. Cell. 124:263–266. 2006. View Article : Google Scholar : PubMed/NCBI | |
Storz P: Reactive oxygen species in tumor progression. Front Biosci. 10:1881–1896. 2005. View Article : Google Scholar : PubMed/NCBI | |
Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Nieto MA, et al: Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature. 436:123–127. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pelicano H, Carney D and Huang P: ROS stress in cancer cells and therapeutic implications. Drug Resist Updat. 7:97–110. 2004. View Article : Google Scholar : PubMed/NCBI | |
Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK and Lambeth JD: Cell transformation by the superoxide-generating oxidase Mox1. Nature. 401:79–82. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R: Basement membranes: Structure, assembly and role in tumour angiogenesis. Nat Rev Cancer. 3:422–433. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hasegawa Y, Takanashi S, Kanehira Y, Tsushima T, Imai T and Okumura K: Transforming growth factor-beta1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer. 91:964–971. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordón-Cardo C, Guise TA and Massagué J: A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 3:537–549. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Elsner T, Botella LM, Velasco B, Corbi A, Attisano L and Bernabéu C: Synergistic cooperation between hypoxia and transforming growth factor-beta pathways on human vascular endothelial growth factor gene expression. J Biol Chem. 276:38527–38535. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Cheng Q, Ye P, Yang G, Liu S, Ao Q, Liu Y and Hu Y: Atorvastatin improves pathological changes in the aged kidney by upregulating peroxisome proliferator-activated receptor expression and reducing matrix metalloproteinase-9 and transforming growth factor-β1 levels. Exp Gerontol. 74:37–42. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hua Y, Zhang W, Xie Z, Xu N and Lu Y: MMP-2 is mainly expressed in arterioles and contributes to cerebral vascular remodeling associated with TGF-β1 signaling. J Mol Neurosci. 59:317–325. 2016. View Article : Google Scholar : PubMed/NCBI | |
Şekerci ÇA, Işbilen B, Işman F, Akbal C, Şimşek F and Tarcan T: Urinary NGF, TGF-β1, TIMP-2 and bladder wall thickness predict neurourological findings in children with myelodysplasia. J Urol. 191:199–205. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schwarte-Waldhoff I, Volpert OV, Bouck NP, Sipos B, Hahn SA, Klein-Scory S, Lüttges J, Klöppel G, Graeven U, Eilert-Micus C, et al: Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc Natl Acad Sci USA. 97:9624–9629. 2000. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Acharya S, Sahin O, Zhang Q, Saito Y, Yao J, Wang H, Li P, Zhang L, Lowery FJ, et al: 14-3-3ζ turns TGF-β's function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2. Cancer Cell. 27:177–192. 2015. View Article : Google Scholar : PubMed/NCBI | |
Akahira J, Sugihashi Y, Suzuki T, Ito K, Niikura H, Moriya T, Nitta M, Okamura H, Inoue S, Sasano H, et al: Decreased expression of 14-3-3 sigma is associated with advanced disease in human epithelial ovarian cancer: Its correlation with aberrant DNA methylation. Clin Cancer Res. 10:2687–2693. 2004. View Article : Google Scholar : PubMed/NCBI |