1
|
Yin P, Zhang L, Li T, Zhang L, Wang G, Li
J, Liu J, Zhou J, Zhang Q and Tang P: Infected nonunion of tibia
and femur treated by bone transport. J Orthop Surg Res. 10:492015.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Vedung T and Vinnars B: Ectopic bone
formation after medial femoral condyle graft to scaphoid nonunion.
J Wrist Surg. 3:46–49. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Malizos KN, Koutalos A, Papatheodorou L,
Varitimidis S, Kontogeorgakos V and Dailiana Z: Vascularized bone
grafting and distal radius osteotomy for scaphoid nonunion advanced
collapse. J Hand Surg Am. 39:872–879. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zura R, Mehta S, Della Rocca GJ and Steen
RG: Biological risk factors for nonunion of bone fracture. JBJS
Rev. 4:pii: 01874474-201601000-00005. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Xiong L, Harhaus L, Heffinger C, Bickert
B, Kremer T, Kneser U and Hirche C: A comparative study on
autologous bone grafting combined with or without posterior
interosseous nerve neurectomy for scaphoid nonunion treatment. J
Plast Reconstr Aesthet Surg. 68:1138–1144. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ismail HD, Phedy P, Kholinne E, Djaja YP,
Kusnadi Y, Merlina M and Yulisa ND: Mesenchymal stem cell
implantation in atrophic nonunion of the long bones: A
translational study. Bone Joint Res. 5:287–293. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Mathieu M, Rigutto S, Ingels A, Spruyt D,
Stricwant N, Kharroubi I, Albarani V, Jayankura M, Rasschaert J,
Bastianelli E and Gangji V: Decreased pool of mesenchymal stem
cells is associated with altered chemokines serum levels in
atrophic nonunion fractures. Bone. 53:391–398. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Qu Z, Guo S, Fang G, Cui Z and Liu Y: AKT
pathway affects bone regeneration in nonunion treated with
umbilical cord-derived mesenchymal stem cells. Cell Biochem
Biophys. 71:1543–1551. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Koga T, Lee SY, Niikura T, Koh A, Dogaki
Y, Okumachi E, Akisue T, Kuroda R and Kurosaka M: Effect of
low-intensity pulsed ultrasound on bone morphogenetic protein
7-induced osteogenic differentiation of human nonunion
tissue-derived cells in vitro. J Ultrasound Med. 32:915–922. 2013.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Ismail HD, Phedy P, Kholinne E, Kusnadi Y,
Sandhow L and Merlina M: Existence of mesenchymal stem cellsin
sites of atrophic nonunion. Bone Joint Res. 2:112–115. 2013.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Reed-Maldonado AB and Lue TF: Re: A
meta-analysis of extracorporeal shock wave therapy for Peyronie's
disease. Eur Urol. 70:895–896. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Argüelles-Salido E, Campoy-Martínez P,
Aguilar-García J, Podio-Lora V and Medina-López R: Prediction of
the energy required for extracorporeal shock wave lithotripsy of
certain stones composition using simple radiology and computerized
axial tomography. Actas Urol Esp. 38:115–121. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhai L, Sun N, Zhang B, Liu ST, Zhao Z,
Jin HC, Ma XL and Xing GY: Effects of focused extracorporeal shock
waves on bone marrow mesenchymal stem cells in patients with
avascular necrosis of the femoral head. Ultrasound Med Biol.
42:753–762. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lee JH and Cho SH: Effect of
extracorporeal shock wave therapy on denervation atrophy and
function caused by sciatic nerve injury. J Phys Ther Sci.
25:1067–1069. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sun D, Junger WG, Yuan C, Zhang W, Bao Y,
Qin D, Wang C, Tan L, Qi B, Zhu D, et al: Shockwaves induce
osteogenic differentiation of human mesenchymal stem cells through
ATP release and activation of P2X7 receptors. Stem Cells.
31:1170–1180. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Huang SW, Walker C, Pennock J, Else K,
Muller W, Daniels MJ, Pellegrini C, Brough D, Lopez-Castejon G and
Cruickshank SM: P2X7 receptor-dependent tuning of gut epithelial
responses to infection. Immunol Cell Biol. 95:178–188. 2017.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Cheung WY, Fritton JC, Morgan SA,
Seref-Ferlengez Z, Basta-Pljakic J, Thi MM, Suadicani SO, Spray DC,
Majeska RJ and Schaffler MB: Pannexin-1 and P2X7-receptor are
required for apoptotic osteocytes in fatigued bone to trigger RANKL
production in neighboring bystander osteocytes. J Bone Miner Res.
31:890–899. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sakaki H, Fujiwaki T, Tsukimoto M, Kawano
A, Harada H and Kojima S: P2X4 receptor regulates P2X7
receptor-dependent IL-1β and IL-18 release in mouse bone
marrow-derived dendritic cells. Biochem Biophys Res Commun.
432:406–411. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bach FC, Miranda-Bedate A, van Heel FW,
Riemers FM, Müller MC, Creemers LB, Ito K, Benz K, Meij BP and
Tryfonidou MA: Bone morphogenetic protein-2, but not mesenchymal
stromal cells, exert regenerative effects on canine and human
nucleus pulposus cells. Tissue Eng Part A. 23:233–242. 2017.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Wang CL, Xiao F, Wang CD, Zhu JF, Shen C,
Zuo B, Wang H, Li, Wang XY, Feng WJ, et al: Gremlin2 suppression
increases the BMP-2-induced osteogenesis of human bone
marrow-derived mesenchymal stem cells via the BMP-2/Smad/Runx2
signaling pathway. J Cell Biochem. 118:286–297. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lavery K, Swain P, Falb D and
Alaoui-Ismaili MH: BMP-2/4 and BMP-6/7 differentially utilize cell
surface receptors to induce osteoblastic differentiation of human
bone marrow-derived mesenchymal stem cells. J Biol Chem.
283:20948–20958. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Falk S, Schwab SD, Frøsig-Jørgensen M,
Clausen RP, Dickenson AH and Heegaard AM: P2X7 receptor-mediated
analgesia in cancer-induced bone pain. Neuroscience. 291:93–105.
2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Müller NA, Calcagni M and Giesen T:
Treatment of painful nonunion of the distal phalanx in the finger
with bone graft and dorsal reverse adipofascial flap based on an
exteriorized pedicle. Tech Hand Up Extrem Surg. 19:115–119. 2015.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Li Y, Ge C and Franceschi RT: MAP
kinase-dependent RUNX2 phosphorylation is necessary for epigenetic
modification of chromatin during osteoblast differentiation. J Cell
Physiol. 232:2427–2435. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hu N, Feng C, Jiang Y, Miao Q and Liu H:
Regulative effect of Mir-205 on osteogenic differentiation of bone
mesenchymal stem cells (BMSCs): Possible role of SATB2/Runx2 and
ERK/MAPK pathway. Int J Mol Sci. 16:10491–10506. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sollazzo V, Palmieri A, Pezzetti F,
Massari L and Carinci F: Effects of pulsed electromagnetic fields
on human osteoblastlike cells (MG-63): A pilot study. Clin Orthop
Relat Res. 468:2260–2277. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Grol MW, Brooks PJ, Pereverzev A and Dixon
SJ: P2X7 nucleotide receptor signaling potentiates the
Wnt/β-catenin pathway in cells of the osteoblast lineage.
Purinergic Signal. 12:509–520. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ota K, Quint P, Weivoda MM, Ruan M,
Pederson L, Westendorf JJ, Khosla S and Oursler MJ: Transforming
growth factor beta 1 induces CXCL16 and leukemia inhibitory factor
expression in osteoclasts to modulate migration of osteoblast
progenitors. Bone. 57:68–75. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wu M, Chen G and Li YP: TGF-β and BMP
signaling in osteoblast, skeletal development, and bone formation,
homeostasis and disease. Bone Res. 4:160092016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lau KW, Rundle CH, Zhou XD, Baylink DJ and
Sheng MH: Conditional deletion of IGF-I in osteocytes unexpectedly
accelerates bony union of the fracture gap in mice. Bone. 92:18–28.
2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hou JM, Chen EY, Lin F, Lin QM, Xue Y, Lan
XH and Wu M: Lactoferrin induces osteoblast growth through IGF-1R.
Int J Endocrinol. 2015:2828062015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Peeters M, Detiger SE, Karfeld-Sulzer LS,
Smit TH, Yayon A, Weber FE and Helder MN: BMP-2 and BMP-2/7
heterodimers conjugated to a fibrin/hyaluronic acid hydrogel in a
large animal model of mild intervertebral disc degeneration. Biores
Open Access. 4:398–406. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Visser R, Bodnarova K, Arrabal PM,
Cifuentes M and Becerra J: Combining bone morphogenetic proteins-2
and −6 has additive effects on osteoblastic differentiation in
vitro and accelerates bone formation in vivo. J Biomed Mater Res A.
104:178–185. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kim HY, Lee JH, Yun JW, Park JH, Park BW,
Rho GJ, Jang SJ, Park JS, Lee HC, Yoon YM, et al: Development of
porous beads to provide regulated BMP-2 stimulation for varying
durations: In Vitro and In Vivo studies for bone regeneration.
Biomacromolecules. 17:1633–1642. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Liu H, Peng H, Wu Y, Zhang C, Cai Y, Xu G,
Li Q, Chen X, Ji J, Zhang Y and OuYang HW: The promotion of bone
regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by
effects on integrin-BMP/Smad signaling pathway in BMSCs.
Biomaterials. 34:4404–4417. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Pfaff JA, Boelck B, Bloch W and Nentwig
GH: Growth factors in bone marrow blood of the mandible with
application of extracorporeal shock wave therapy. Implant Dent.
25:606–612. 2016. View Article : Google Scholar : PubMed/NCBI
|