1
|
Maron BJ, Towbin JA, Thiene G,
Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE and Young
JB: American Heart Association, et al: Contemporary
definitions and classification of the cardiomyopathies: An American
heart association scientific statement from the council on clinical
cardiology, heart failure and transplantation committee; quality of
care and outcomes research and functional genomics and
translational biology interdisciplinary working groups; and council
on epidemiology and prevention. Circulation. 113:1807–1816. 2006.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Jellis C, Martin J, Narula J and Marwick
TH: Assessment of nonischemic myocardial fibrosis. J Am Coll
Cardiol. 56:89–97. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
de Leeuw N, Ruiter DJ, Balk AH, de Jonge
N, Melchers WJ and Galama JM: Histopathologic findings in explanted
heart tissue from patients with end-stage idiopathic dilated
cardiomyopathy. Transpl Int. 14:299–306. 2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Schalla S, Bekkers SC, Dennert R, van
Suylen RJ, Waltenberger J, Leiner T, Wildberger J, Crijns HJ and
Heymans S: Replacement and reactive myocardial fibrosis in
idiopathic dilated cardiomyopathy: Comparison of magnetic resonance
imaging with right ventricular biopsy. Eur J Heart Fail.
12:227–231. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Porter KE and Turner NA: Cardiac
fibroblasts: At the heart of myocardial remodeling. Pharmacol Ther.
123:255–278. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zeisberg EM, Tarnavski O, Zeisberg M,
Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT,
Roberts AB, et al: Endothelial-to-mesenchymal transition
contributes to cardiac fibrosis. Nat Med. 13:952–961. 2007.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Mjaatvedt CH, Lepera RC and Markwald RR:
Myocardial specificity for initiating endothelial-mesenchymal cell
transition in embryonic chick heart correlates with a particulate
distribution of fibronectin. Dev Biol. 119:59–67. 1987. View Article : Google Scholar : PubMed/NCBI
|
8
|
Aisagbonhi O, Rai M, Ryzhov S, Atria N,
Feoktistov I and Hatzopoulos AK: Experimental myocardial infarction
triggers canonical Wnt signaling and endothelial-to-mesenchymal
transition. Dis Model Mech. 4:469–483. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tang RN, Lv LL, Zhang JD, Dai HY, Li Q,
Zheng M, Ni J, Ma KL and Liu BC: Effects of angiotensin II receptor
blocker on myocardial endothelial-to-mesenchymal transition in
diabetic rats. Int J Cardiol. 162:92–99. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Widyantoro B, Emoto N, Nakayama K,
Anggrahini DW, Adiarto S, Iwasa N, Yagi K, Miyagawa K, Rikitake Y,
Suzuki T, et al: Endothelial cell-derived endothelin-1 promotes
cardiac fibrosis in diabetic hearts through stimulation of
endothelial-to-mesenchymal transition. Circulation. 121:2407–2418.
2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Arciniegas E, Frid MG, Douglas IS and
Stenmark KR: Perspectives on endothelial-to-mesenchymal transition:
Potential contribution to vascular remodeling in chronic pulmonary
hypertension. Am J Physiol Lung Cell Mol Physiol. 293:L1–L8. 2007.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Selek L, Dhobb M, van der Sanden B, Berger
F and Wion D: Existence of tumor-derived endothelial cells suggests
an additional role for endothelial-to-mesenchymal transition in
tumor progression. Int J Cancer. 128:1502–1503. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Jeong H, Ryu YJ, An J, Lee Y and Kim A:
Epithelial-mesenchymal transition in breast cancer correlates with
high histological grade and triple-negative phenotype.
Histopathology. 60:E87–E95. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zeisberg EM, Potenta SE, Sugimoto H,
Zeisberg M and Kalluri R: Fibroblasts in kidney fibrosis emerge via
endothelial-to-mesenchymal transition. J Am Soc Nephrol.
19:2282–2287. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Person AD, Garriock RJ, Krieg PA, Runyan
RB and Klewer SE: Frzb modulates Wnt-9a-mediated beta-catenin
signaling during avian atrioventricular cardiac cushion
development. Dev Biol. 278:35–48. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Cohen ED, Tian Y and Morrisey EE: Wnt
signaling: An essential regulator of cardiovascular
differentiation, morphogenesis and progenitor self-renewal.
Development. 135:789–798. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
López B, González A, Ravassa S, Beaumont
J, Moreno MU, José San G, Querejeta R and Díez J: Circulating
biomarkers of myocardial fibrosis: The need for a reappraisal. J Am
Coll Cardiol. 65:2449–2456. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Querejeta R, Varo N, López B, Larman M,
Artiñano E, Etayo JC, Ubago Martínez JL, Gutierrez-Stampa M,
Emparanza JI, Gil MJ, et al: Serum carboxy-terminal propeptide of
procollagen type I is a marker of myocardial fibrosis in
hypertensive heart disease. Circulation. 101:1729–1735. 2000.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Ghosh AK, Bradham WS, Gleaves LA, De Taeye
B, Murphy SB, Covington JW and Vaughan DE: Genetic deficiency of
plasminogen activator inhibitor-1 promotes cardiac fibrosis in aged
mice: Involvement of constitutive transforming growth factor-beta
signaling and endothelial-to-mesenchymal transition. Circulation.
122:1200–1209. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Okayama K, Azuma J, Dosaka N, Iekushi K,
Sanada F, Kusunoki H, Iwabayashi M, Rakugi H, Taniyama Y and
Morishita R: Hepatocyte growth factor reduces cardiac fibrosis by
inhibiting endothelial-mesenchymal transition. Hypertension.
59:958–965. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Khan R and Sheppard R: Fibrosis in heart
disease: Understanding the role of transforming growth factor-beta
in cardiomyopathy, valvular disease and arrhythmia. Immunology.
118:10–24. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Rivera-Feliciano J, Lee KH, Kong SW,
Rajagopal S, Ma Q, Springer Z, Izumo S, Tabin CJ and Pu WT:
Development of heart valves requires Gata4 expression in
endothelial-derived cells. Development. 133:3607–3618. 2006.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Donaldson IJ, Amin S, Hensman JJ, Kutejova
E, Rattray M, Lawrence N, Hayes A, Ward CM and Bobola N:
Genome-wide occupancy links Hoxa2 to Wnt-β-catenin signaling in
mouse embryonic development. Nucleic Acids Res. 40:3990–4001. 2012.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Monga SP: Role of Wnt/β-catenin signaling
in liver metabolism and cancer. Int J Biochem Cell Biol.
43:1021–1029. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Brade T, Männer J and Kühl M: The role of
Wnt signalling in cardiac development and tissue remodelling in the
mature heart. Cardiovasc Res. 72:198–209. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Berendsen AD, Fisher LW, Kilts TM, Owens
RT, Robey PG, Gutkind JS and Young MF: Modulation of canonical Wnt
signaling by the extracellular matrix component biglycan. Proc Natl
Acad Sci USA. 108:17022–17027. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Luu HH, Zhang R, Haydon RC, Rayburn E,
Kang Q, Si W, Park JK, Wang H, Peng Y, Jiang W and He TC:
Wnt/beta-catenin signaling pathway as a novel cancer drug target.
Curr Cancer Drug Targets. 4:653–671. 2004. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cano A, Pérez-Moreno MA, Rodrigo I,
Locascio A, Blanco MJ, del Barrio MG, Portillo F and Nieto MA: The
transcription factor snail controls epithelial-mesenchymal
transitions by repressing E-cadherin expression. Nat Cell Biol.
2:76–83. 2000. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Niessen K, Fu Y, Chang L, Hoodless PA,
McFadden D and Karsan A: Slug is a direct Notch target required for
initiation of cardiac cushion cellularization. J Cell Biol.
182:315–325. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Medici D, Potenta S and Kalluri R:
Transforming growth factor-β2 promotes Snail-mediated
endothelial-mesenchymal transition through convergence of
Smad-dependent and Smad-independent signalling. Biochem J.
437:515–520. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lopez D, Niu G, Huber P and Carter WB:
Tumor-induced upregulation of Twist, snail and slug represses the
activity of the human VE-cadherin promoter. Arch Biochem Biophys.
482:77–82. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Okada H and Kalluri R: Cellular and
molecular pathways that lead to progression and regression of renal
fibrogenesis. Curr Mol Med. 5:467–474. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Okada H and Kalluri R: Recapitulation of
kidney development paradigms by BMP-7 reverses chronic renal
injury. Clin Exp Nephrol. 9:100–101. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Tang R, Li Q, Lv L, Dai H, Zheng M, Ma K
and Liu B: Angiotensin II mediates the high-glucose-induced
endothelial-to-mesenchymal transition in human aortic endothelial
cells. Cardiovasc Diabetol. 9:312010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Tuuminen R, Syrjälä S, Krebs R, Keränen
MA, Koli K, Abo-Ramadan U, Neuvonen PJ, Tikkanen JM, Nykänen AI and
Lemström KB: Donor simvastatin treatment abolishes rat cardiac
allograft ischemia/reperfusion injury and chronic rejection through
microvascular protection. Circulation. 124:1138–1150. 2011.
View Article : Google Scholar : PubMed/NCBI
|