Nanoparticles for death‑induced gene therapy in cancer (Review)
- Authors:
- Jorge A. Roacho‑Perez
- Hugo L. Gallardo‑Blanco
- Margarita Sanchez‑Dominguez
- Perla E. Garcia‑Casillas
- Christian Chapa‑Gonzalez
- Celia N. Sanchez‑Dominguez
-
Affiliations: Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico, Department of Genetics, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico, Centro de Investigacion en Materiales Avanzados, S. C. (CIMAV, S.C.), Unidad Monterrey, Apodaca, Nuevo Leon 66628, Mexico, Universidad Autonoma de Ciudad Juarez, Institute of Engineering and Technology, Ciudad Juarez, Chihuahua 32310, Mexico - Published online on: November 15, 2017 https://doi.org/10.3892/mmr.2017.8091
- Pages: 1413-1420
This article is mentioned in:
Abstract
Qin SY, Zhang AQ, Cheng SX, Rong L and Zhang XZ: Drug self-delivery systems for cancer therapy. Biomaterials. 112:234–247. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun NF, Liu ZA, Huang WB, Tian AL and Hu SY: The research of nanoparticles as gene vector for tumor gene therapy. Crit Rev Oncol Hematol. 89:352–357. 2014. View Article : Google Scholar : PubMed/NCBI | |
van Ramshorst MS, van Werkhoven E, Honkoop AH, Dezentjé VO, Oving IM, Mandjes IA, Kemper I, Smorenburg CH, Stouthard JM, Linn SC, et al: Toxicity of dual HER2-blockade with pertuzumab added to anthracycline versus non-anthracycline containing chemotherapy as neoadjuvant treatment in HER2-positive breast cancer: The TRAIN-2 study. Breast. 29:153–159. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vago R, Collico V, Zuppone S, Prosperi D and Colombo M: Nanoparticle-mediated delivery of suicide genes in cancer therapy. Pharmacol Res. 111:619–641. 2016. View Article : Google Scholar : PubMed/NCBI | |
Banerjee SM, MacRobert AJ, Mosse CA, Periera B, Bown SG and Keshtgar MR: Photodynamic therapy: Inception to application in breast cancer. Breast. 31:105–113. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Dominguez CN, Gallardo-Blanco HL, Rodriguez-Rodriguez AA, Vela-Gonzalez AV and Sanchez-Dominguez M: Nanoparticles vs cancer: A multifuncional tool. Curr Top Med Chem. 14:664–675. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yu M, Wu J, Shi J and Farokhzad OC: Nanotechnology for protein delivery: Overview and perspectives. J Control Release. 240:24–37. 2016. View Article : Google Scholar : PubMed/NCBI | |
Beik J, Abed Z, Ghoreishi FS, Hosseini-Nami S, Mehrzadi S, Shakeri-Zadeh A and Kamrava SK: Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. J Control Release. 235:205–221. 2016. View Article : Google Scholar : PubMed/NCBI | |
Amer MH: Gene therapy for cancer: Present status and future perspective. Mol Cell Ther. 2:272014. View Article : Google Scholar : PubMed/NCBI | |
Tolmasky ME: Plasmids. Reference Module in Life Sciences: Elsevier. 2017. View Article : Google Scholar | |
Fang CY, Tsai YD, Lin MC, Wang M, Chen PL, Chao CN, Huang YL, Chang D and Shen CH: Inhibition of human bladder cancer growth by a suicide gene delivered by JC polyomavirus virus-like particles in a mouse model. J Urol. 193:2100–2106. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim HA, Nam K, Lee M and Kim SW: Hypoxia/hepatoma dual specific suicide gene expression plasmid delivery using bio-reducible polymer for hepatocellular carcinoma therapy. J Control Release. 171:1–10. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lazarus GG and Singh M: In vitro cytotoxic activity and transfection efficiency of polyethyleneimine functionalized gold nanoparticles. Colloids Surf B Biointerfaces. 145:906–911. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O, Farrell CM, Hart J, Landrum MJ, McGarvey KM, et al: RefSeq: An update on mammalian reference sequences. Nucleic Acids Res. 42:(Database Issue). D756–D763. 2014. View Article : Google Scholar : PubMed/NCBI | |
Luo C, Miao L, Zhao Y, Musetti S, Wang Y, Shi K and Huang L: A novel cationic lipid with intrinsic antitumor activity to facilitate gene therapy of TRAIL DNA. Biomaterials. 102:239–248. 2016. View Article : Google Scholar : PubMed/NCBI | |
Inoue N, Watanabe M, Ishido N, Kodu A, Maruoka H, Katsumata Y, Hidaka Y and Iwatani Y: Involvement of genes encoding apoptosis regulatory factors (FAS, FASL, TRAIL, BCL2, TNFR1 and TNFR2) in the pathogenesis of autoimmune thyroid diseases. Hum Immunol. 77:944–951. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhan C, Li C, Wei X and Lu W and Lu W: Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy. Adv Drug Deliv Rev. 90:101–118. 2015. View Article : Google Scholar : PubMed/NCBI | |
Glinka EM: Eukaryotic expression vectors bearing genes encoding cytotoxic proteins for cancer gene therapy. Plasmid. 68:69–85. 2012. View Article : Google Scholar : PubMed/NCBI | |
Walsh MJ, Dodd JE and Hautbergue GM: Ribosome-inactivating proteins: Potent poisons and molecular tools. Virulence. 15:774–784. 2013. View Article : Google Scholar | |
Glinka EM: Eukaryotic expression vectors containing genes encoding plant proteins for killing of cancer cells. Cancer Epidemiol. 37:1014–1019. 2013. View Article : Google Scholar : PubMed/NCBI | |
Malekshah OM, Chen X, Nomani A, Sarkar S and Hatefi A: Enzyme/prodrug systems for cancer gene therapy. Curr Pharmacol Rep. 2:299–308. 2016. View Article : Google Scholar : PubMed/NCBI | |
Duarte S, Carle G, Faneca H, de Lima MC and Pierrefite-Carle V: Suicide gene therapy in cancer: Where do we stand now? Cancer Lett. 324:160–170. 2012. View Article : Google Scholar : PubMed/NCBI | |
Karjoo Z, Chen X and Hatefi A: Progress and problems with the use of suicide genes for targeted cancer therapy. Adv Drug Deliv Rev. 99:113–128. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lila Abu AS, Uehara Y, Ishida T and Kiwada H: Application of polyglycerol coating to plasmid DNA lipoplex for the evasion of the accelerated blood clearance phenomenon in nucleic acid delivery. J Pharm Sci. 103:557–566. 2014. View Article : Google Scholar : PubMed/NCBI | |
Badrinath N, Heo J and Yoo SY: Viruses as nanomedicine for cancer. Int J Nanomedicine. 11:4835–4847. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dizaj SM, Jafari S and Khosroushahi AY: A sight on the current nanoparticle-based gene delivery vectors. Nanoscale Res Lett. 9:2522014. View Article : Google Scholar : PubMed/NCBI | |
Crespo-Barreda A, Encabo-Berzosa MM, González-Pastor R, Ortíz-Teba P, Iglesias M, Serrano JL and Duque-Martin P: Chapter 11-viral and nonviral vectors for in vivo and ex vivo gene therapies A2-laurence, JeffreyTrans Regenerative Med Clinic. Boston: Academic Press; pp. 155–177. 2016, View Article : Google Scholar | |
Zou W, Liu C, Chen Z and Zhang N: Preparation and characterization of cationic PLA-PEG nanoparticles for delivery of plasmid DNA. Nanoscale Res Lett. 4:982–992. 2009. View Article : Google Scholar : PubMed/NCBI | |
Raju D, Vishwakarma RK, Khan BM, Mehta UJ and Ahmad A: Biological synthesis of cationic gold nanoparticles and binding of plasmid DNA. Mater Lett. 129:159–161. 2014. View Article : Google Scholar | |
Anselmo AC and Mitragotri S: Nanoparticles in the clinic. Bioeng Trans Med. 1:10–29. 2016. | |
Gebremedhin S, Singh A, Koons S, Bernt W, Konopka K and Duzgunes N: Gene delivery to carcinoma cells via novel non-viral vectors: Nanoparticle tracking analysis and suicide gene therapy. Eur J Pharm Sci. 60:72–79. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Tian H, Xing Z, Zhang D, Guo Y, Guo Z, Zhu X and Chen X: A non-viral suicide gene delivery system traversing the blood brain barrier for non-invasive glioma targeting treatment. J Control Release. 243:357–369. 2016. View Article : Google Scholar : PubMed/NCBI | |
Eslaminejad T, Nematollahi-Mahani SN and Ansari M: Synthesis, characterization and cytotoxicity of the plasmid EGFP-p53 loaded on pullulan-spermine magnetic nanoparticles. J Magn Magn Mater. 402:34–43. 2016. View Article : Google Scholar | |
McBride JW, Massey AS, McCaffrey J, McCrudden CM, Coulter JA, Dunne NJ, Robson T and McCarthy HO: Development of TMTP-1 targeted designer biopolymers for gene delivery to prostate cancer. Int J Pharm. 500:144–153. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Kievit FM and Zhang M: Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies. Pharmacol Res. 114:56–66. 2016. View Article : Google Scholar : PubMed/NCBI | |
Islam MA, Park TE, Singh B, Maharjan S, Firdous J, Cho MH, Kang SK, Yun CH, Choi YJ and Cho CS: Major degradable polycations as carriers for DNA and siRNA. J Control Release. 193:74–89. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pérez-Herrero E and Fernández-Medarde A: Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 93:52–79. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bishop CJ, Majewski RL, Guiriba TR, Wilson DR, Bhise NS, Quiñones-Hinojosa A and Green JJ: Quantification of cellular and nuclear uptake rates of polymeric gene delivery nanoparticles and DNA plasmids via flow cytometry. Acta Biomater. 37:120–130. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guo J, O'Driscoll CM, Holmes JD and Rahme K: Bioconjugated gold nanoparticles enhance cellular uptake: A proof of concept study for siRNA delivery in prostate cancer cells. Int J Pharm. 509:16–27. 2016. View Article : Google Scholar : PubMed/NCBI | |
Masood F: Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C Mater Biol Appl. 60:569–578. 2016. View Article : Google Scholar : PubMed/NCBI | |
Carrillo C, Suñé JM, Pérez-Lozano P, García-Montoya E, Sarrate R, Fàbregas A, Miñarro M and Ticó JR: Chitosan nanoparticles as non-viral gene delivery systems: Determination of loading efficiency. Biomed Pharmacother. 68:775–783. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bor G, Mytych J, Zebrowski J, Wnuk M and Şanli-Mohamed G: Cytotoxic and cytostatic side effects of chitosan nanoparticles as a non-viral gene carrier. Int J Pharm. 513:431–437. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Deng W, Wang Y, Cao X, Chen J, Wang Q, Xu W, Du P, Yu Q, Chen J, et al: Cationic carbon quantum dots derived from alginate for gene delivery: One-step synthesis and cellular uptake. Acta Biomater. 42:209–219. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tirkey B, Bhushan B, Kumar Uday S and Gopinath P: Prodrug encapsulated albumin nanoparticles as an alternative approach to manifest anti-proliferative effects of suicide gene therapy. Mater Sci Eng C Mater Biol Appl. 73:507–515. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shi S, Shi K, Tan L, Qu Y, Shen G, Chu B, Zhang S, Su X, Li X, Wei Y and Qian Z: The use of cationic MPEG-PCL-g-PEI micelles for co-delivery of Msurvivin T34A gene and doxorubicin. Biomaterials. 35:4536–4547. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gaspar VM, Baril P, Costa EC, de Melo-Diogo D, Foucher F, Queiroz JA, Sousa F, Pichon C and Correia IJ: Bioreducible poly(2-ethyl-2-oxazoline)-PLA-PEI-SS triblock copolymer micelles for co-delivery of DNA minicircles and Doxorubicin. J Control Release. 213:175–191. 2015. View Article : Google Scholar : PubMed/NCBI | |
Peng SF, Hsu HK, Lin CC, Cheng YM and Hsu KH: Novel PEI/Poly-γ-Gutamic Acid Nanoparticles for high efficient siRNA and Plasmid DNA Co-Delivery. Molecules. 22:pii: E86. 2017. View Article : Google Scholar | |
Cocco E, Deng Y, Shapiro EM, Bortolomai I, Lopez S, Lin K, Bellone S, Cui J, Menderes G, Black JD, et al: Dual-targeting nanoparticles for in vivo delivery of suicide genes to chemotherapy-resistant ovarian cancer cells. Mol Cancer Ther. 16:323–333. 2017. View Article : Google Scholar : PubMed/NCBI | |
Frede A, Neuhaus B, Klopfleisch R, Walker C, Buer J, Müller W, Epple M and Westendorf AM: Colonic gene silencing using siRNA-loaded calcium phosphate/PLGA nanoparticles ameliorates intestinal inflammation in vivo. J Control Release. 222:86–96. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ohta T, Hashida Y, Higuchi Y, Yamashita F and Hashida M: In vitro cellular gene delivery employing a novel composite material of single-walled carbon nanotubes associated with designed peptides with pegylation. J Pharm Sci. 106:792–802. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shekhar S, Roy A, Hong D and Kumta PN: Nanostructured silicate substituted calcium phosphate (NanoSiCaPs) nanoparticles-efficient calcium phosphate based non-viral gene delivery systems. Mater Sci Eng C Mater Biol Appl. 69:486–495. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Hei M, Xu Y, Qian X and Zhu W: Ammonium salt modified mesoporous silica nanoparticles for dual intracellular-responsive gene delivery. Int J Pharm. 511:689–702. 2016. View Article : Google Scholar : PubMed/NCBI | |
El-Sherbiny IM, Elbaz NM, Sedki M, Elgammal A and Yacoub MH: Magnetic nanoparticles-based drug and gene delivery systems for the treatment of pulmonary diseases. Nanomedicine (Lond). 12:387–402. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Shi Z, Jia S and Zhang P: The force analysis for superparamagnetic nanoparticles-based gene delivery in an oscillating magnetic field. J Magn Magn Mater. 427:85–89. 2017. View Article : Google Scholar | |
Sun T, Zhang YS, Pang B, Hyun DC, Yang M and Xia Y: Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 53:12320–12344. 2014.PubMed/NCBI | |
Xu X, Ho W, Zhang X, Bertrand N and Farokhzad O: Cancer nanomedicine: From targeted delivery to combination therapy. Trends Mol Med. 21:223–232. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang Y and Yu C: Advances in silica based nanoparticles for targeted cancer therapy. Nanomedicine. 12:317–332. 2016. View Article : Google Scholar : PubMed/NCBI | |
Suk JS, Xu Q, Kim N, Hanes J and Ensign LM: PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 99:28–51. 2016. View Article : Google Scholar : PubMed/NCBI | |
Casettari L, Vllasaliu D, Castagnino E, Stolnik S, Howdle S and Illum L: PEGylated chitosan derivatives: Synthesis, characterizations and pharmaceutical applications. Prog Polym Sci. 37:659–685. 2012. View Article : Google Scholar | |
Palacio J, Agudelo NA and Lopez BL: PEGylation of PLA nanoparticles to improve mucus-penetration and colloidal stability for oral delivery systems. Curr Opin Chem Eng. 11:14–19. 2016. View Article : Google Scholar | |
Kim J, Kang Y, Tzeng SY and Green JJ: Synthesis and application of poly (ethylene glycol)-co-poly (β-amino ester) copolymers for small cell lung cancer gene therapy. Acta Biomaterialia. 41:293–301. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ahmed S, Sami A and Xiang J: HER2-directed therapy: Current treatment options for HER2-positive breast cancer. Breast Cancer. 22:101–116. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Staley C, Kooby D, El-Rays B, Mao H and Yang L: Current status of biomarker and targeted nanoparticle development: The precision oncology approach for pancreatic cancer therapy. Cancer Lett. 388:139–148. 2017. View Article : Google Scholar : PubMed/NCBI | |
Grunewald T and Ledermann JA: Targeted Therapies for Ovarian Cancer. Best Pract Res Clin Obstet Gynaecol. 14:139–152. 2017. View Article : Google Scholar | |
McMahon KM, Scielzo C, Angeloni NL, Deiss-Yehiely E, Scarfo L, Ranghetti P, Ma S, Kaplan J, Barbaglio F, Gordon LI, et al: Synthetic high-density lipoproteins as targeted monotherapy for chronic lymphocytic leukemia. Oncotarget. 8:11219–11227. 2017.PubMed/NCBI | |
Liu J, Zhao D, He W, Zhang H, Li Z and Luan Y: Nanoassemblies from amphiphilic cytarabine prodrug for leukemia targeted therapy. J Colloid Interface Sci. 487:239–249. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pillai MR, Nanabala R, Joy A, Sasikumar A and Knapp FF: Radiolabeled enzyme inhibitors and binding agents targeting PSMA: Effective theranostic tools for imaging and therapy of prostate cancer. Nucl Med Biol. 43:692–720. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xie T, Dong B, Yan Y, Hu G and Xu Y: Association between MMP-2 expression and prostate cancer: A meta-analysis. Biomed Rep. 4:241–245. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tarokh Z, Naderi-Manesh H and Nazari M: Towards prostate cancer gene therapy: Development of a chlorotoxin-targeted nanovector for toxic (melittin) gene delivery. Eur J Pharm Sci. 99:209–218. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Wu Q, Peng F, Liu L and Gong C: Strategies of polymeric nanoparticles for enhanced internalization in cancer therapy. Colloids Surf B Biointerfaces. 135:56–72. 2015. View Article : Google Scholar : PubMed/NCBI | |
Christian CG, Carlos MP, Alejandro MM, Imelda OA, Oscar ZT, Adriana ME and Perla GC: Development of antibody-coated magnetite nanoparticles for biomarker immobilization. Journal of Nanomaterials. 2014:72014. | |
Thorek DL, Elias DR and Tsourkas A: Comparative analysis of nanoparticle-antibody conjugations: Carbodiimide versus click chemistry. Mol Imaging. 8:221–229. 2009.PubMed/NCBI | |
Crivianu-Gaita V and Thompson M: Aptamers, antibody scFv, and antibody Fab' fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements. Biosens Bioelectron. 85:32–45. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Wilson DR, Zamboni CG and Green JJ: Targeted polymeric nanoparticles for cancer gene therapy. J Drug Target. 23:627–641. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cheraghi R, Nazari M, Alipour M, Majidi A and Hosseinkhani S: Development of a targeted anti-HER2 scFv chimeric peptide for gene delivery into HER2-positive breast cancer cells. Int J Pharm. 515:632–643. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cai Z, Chattopadhyay N, Yang K, Kwon YL, Yook S, Pignol JP and Reilly RM: 111In-labeled trastuzumab-modified gold nanoparticles are cytotoxic in vitro to HER2-positive breast cancer cells and arrest tumor growth in vivo in athymic mice after intratumoral injection. Nucl Med Biol. 43:818–826. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yin XB, Wu LQ, Fu HQ, Huang MW, Wang K, Zhou F, Yu X and Wang KY: Inhibitory effect of humanized anti-VEGFR-2 ScFv-As2O3-stealth nanoparticles conjugate on growth of human hepatocellular carcinoma: In vitro and in vivo studies. Asian Pac J Trop Med. 7:337–343. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xiangbao Y, Linquan W, Mingwen H, Fan Z, Kai W, Xin Y, Kaiyang W and Huaqun F: Humanized anti-VEGFR-2 ScFv-As2O3-stealth nanoparticles, an antibody conjugate with potent and selective anti-hepatocellular carcinoma activity. Biomed Pharmacother. 68:597–602. 2014. View Article : Google Scholar : PubMed/NCBI |