Role of the CRISPR system in controlling gene transcription and monitoring cell fate (Review)
- Authors:
- Stella Baliou
- Maria Adamaki
- Anthony M. Kyriakopoulos
- Demetrios A. Spandidos
- Michalis Panayiotidis
- Ioannis Christodoulou
- Vassilis Zoumpourlis
-
Affiliations: National Hellenic Research Foundation, 11635 Athens, Greece, Nasco AD Biotechnology Laboratory, 18536 Pireus, Greece, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece, Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK - Published online on: November 16, 2017 https://doi.org/10.3892/mmr.2017.8099
- Pages: 1421-1427
-
Copyright: © Baliou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Wright AV, Nuñez JK and Doudna JA: Biology and applications of CRISPR systems: Harnessing nature's toolbox for genome engineering. Cell. 164:29–44. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wiedenheft B, Sternberg SH and Doudna JA: RNA-guided genetic silencing systems in bacteria and archaea. Nature. 482:331–338. 2012. View Article : Google Scholar : PubMed/NCBI | |
van der Oost J, Westra ER, Jackson RN and Wiedenheft B: Unravelling the structural and mechanistic basis of CRISPR-cas systems. Nat Rev Microbiol. 12:479–492. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mougiakos I, Bosma EF, de Vos WM, van Kranenburg R and van der Oost J: Next generation prokaryotic engineering: The CRISPR-cas toolkit. Trends Biotechnol. 34:575–587. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bolotin A, Quinquis B, Sorokin A and Ehrlich SD: Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. 151:2551–2561. 2005. View Article : Google Scholar : PubMed/NCBI | |
Westra ER, Semenova E, Datsenko KA, Jackson RN, Wiedenheft B, Severinov K and Brouns SJ: Type I-E CRISPR-cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. PLoS Genet. 9:e10037422013. View Article : Google Scholar : PubMed/NCBI | |
Mojica FJ, Díez-Villaseñor C, García-Martínez J and Almendros C: Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology. 155:733–740. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G and Linsley PS: Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol. 21:635–637. 2003. View Article : Google Scholar : PubMed/NCBI | |
Marine S, Bahl A, Ferrer M and Buehler E: Common seed analysis to identify off-target effects in siRNA screens. J Biomol Screen. 17:370–378. 2012. View Article : Google Scholar : PubMed/NCBI | |
Moore JD: The impact of CRISPR-Cas9 on target identification and validation. Drug Discov Today. 20:450–457. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA and Zhang F: Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 8:2281–2308. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kuscu C, Arslan S, Singh R, Thorpe J and Adli M: Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol. 32:677–683. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fu Y, Sander JD, Reyon D, Cascio VM and Joung JK: Improving CRISPR-cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 32:279–284. 2014. View Article : Google Scholar : PubMed/NCBI | |
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP and Lim WA: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 152:1173–1183. 2013. View Article : Google Scholar : PubMed/NCBI | |
Boettcher M and McManus MT: Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell. 58:575–585. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lawhorn IE, Ferreira JP and Wang CL: Evaluation of sgRNA target sites for CRISPR-mediated repression of TP53. PLoS One. 9:e1132322014. View Article : Google Scholar : PubMed/NCBI | |
Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, et al: CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 154:442–451. 2013. View Article : Google Scholar : PubMed/NCBI | |
Konermann S, Brigham MD, Trevino A, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM and Zhang F: Optical control of mammalian endogenous transcription and epigenetic states. Nature. 500:472–476. 2013.PubMed/NCBI | |
Mandegar MA, Huebsch N, Frolov EB, Shin E, Truong A, Olvera MP, Chan AH, Miyaoka Y, Holmes K, Spencer CI, et al: CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell. 18:541–553. 2016. View Article : Google Scholar : PubMed/NCBI | |
Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS and Qi LS: CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc. 8:2180–2196. 2013. View Article : Google Scholar : PubMed/NCBI | |
Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH and Joung JK: CRISPR RNA-guided activation of endogenous human genes. Nat Methods. 10:977–979. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L and Church GM: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 31:833–838. 2013. View Article : Google Scholar : PubMed/NCBI | |
Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, et al: RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. 10:973–976. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS and Vale RD: A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 159:635–646. 2014. View Article : Google Scholar : PubMed/NCBI | |
La Russa MF and Qi LS: The new state of the art: Cas9 for gene activation and repression. Mol Cell Biol. 35:3800–3809. 2015. View Article : Google Scholar : PubMed/NCBI | |
Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, et al: Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 517:583–588. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle MPR, Iyer E, Lin S, Kiani S, Guzman CD, Wiegand DJ, et al: Highly efficient Cas9-mediated transcriptional programming. Nat Methods. 12:326–328. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M, Tsai JC, Weissman JS, Dueber JE, Qi LS and Lim WA: Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell. 160:339–350. 2015. View Article : Google Scholar : PubMed/NCBI | |
Braun CJ, Bruno PM, Horlbeck MA, Gilbert LA, Weissman JS and Hemann MT: Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation. Proc Natl Acad Sci USA. 113:E3892–E3900. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mansour MR, Abraham BJ, Anders L, Berezovskaya A, Gutierrez A, Durbin AD, Etchin J, Lawton L, Sallan SE, Silverman LB, et al: Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science. 346:1373–1377. 2014. View Article : Google Scholar : PubMed/NCBI | |
Inoue F, Kircher M, Martin B, Cooper GM, Witten DM, McManus MT, Ahituv N and Shendure J: A systematic comparison reveals substantial differences in chromosomal versus episomal encoding of enhancer activity. Genome Res. 27:38–52. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xie S, Duan J, Li B, Zhou P and Hon GC: Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Molecular cell. 66:285–99. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chiba K, Johnson JZ, Vogan JM, Wagner T, Boyle JM and Hockemeyer D: Cancer-associated TERT promoter mutations abrogate telomerase silencing. eLife. 4:42015. View Article : Google Scholar | |
Polstein LR and Gersbach CA: A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol. 11:198–200. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hemphill J, Borchardt EK, Brown K, Asokan A and Deiters A: Optical Control of CRISPR/Cas9 gene editing. J Am Chem Soc. 137:5642–5645. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nihongaki Y, Kawano F, Nakajima T and Sato M: Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol. 33:755–760. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu KI, Ramli MN, Woo CW, Wang Y, Zhao T, Zhang X, Yim GR, Chong BY, Gowher A, Chua MZ, et al: A chemical-inducible CRISPR-Cas9 system for rapid control of genome editing. Nat Chem Biol. 12:980–987. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zetsche B, Volz SE and Zhang F: A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol. 33:139–142. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, et al: Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 159:647–661. 2014. View Article : Google Scholar : PubMed/NCBI | |
Haemmerle M and Gutschner T: Long non-coding RNAs in cancer and development: Where do we go from here? Int J Mol Sci. 16:1395–1405. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM and Terns MP: RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell. 139:945–956. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gutschner T: Silencing long noncoding RNAs with genome-editing tools. Methods Mol Biol. 1239:241–250. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, Sanchez-Gomez DB, Hacisuleyman E, Li E, Spence M, et al: Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife. 2:e017492013. View Article : Google Scholar : PubMed/NCBI | |
Yin Y, Yan P, Lu J, Song G, Zhu Y, Li Z, Zhao Y, Shen B, Huang X, Zhu H, et al: Opposing roles for the lncRNA haunt and its genomic locus in regulating HOXA gene activation during embryonic stem cell differentiation. Cell Stem Cell. 16:504–516. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xiao A, Wang Z, Hu Y, Wu Y, Luo Z, Yang Z, Zu Y, Li W, Huang P, Tong X, et al: Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res. 41:e1412013. View Article : Google Scholar : PubMed/NCBI | |
Li X, Chen W, Zeng W, Wan C, Duan S and Jiang S: microRNA-137 promotes apoptosis in ovarian cancer cells via the regulation of XIAP. Br J Cancer. 116:66–76. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhen S, Hua L, Liu YH, Sun XM, Jiang MM, Chen W, Zhao L and Li X: Inhibition of long non-coding RNA UCA1 by CRISPR/Cas9 attenuated malignant phenotypes of bladder cancer. Oncotarget. 8:9634–9646. 2017.PubMed/NCBI | |
Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, et al: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 464:1071–1076. 2010. View Article : Google Scholar : PubMed/NCBI | |
Singh R, Gupta SC, Peng WX, Zhou N, Pochampally R, Atfi A, Watabe K, Lu Z and Mo YY: Regulation of alternative splicing of Bcl-x by BC200 contributes to breast cancer pathogenesis. Cell Death Dis. 7:e22622016. View Article : Google Scholar : PubMed/NCBI | |
Yin Y, Zhong J, Li SW, Li JZ, Zhou M, Chen Y, Sang Y and Liu L: TRIM11, a direct target of miR-24-3p, promotes cell proliferation and inhibits apoptosis in colon cancer. Oncotarget. 7:86755–86765. 2016.PubMed/NCBI | |
Cheng J, Roden CA, Pan W, Zhu S, Baccei A, Pan X, Jiang T, Kluger Y, Weissman SM, Guo S, et al: A molecular chipper technology for CRISPR sgRNA library generation and functional mapping of noncoding regions. Nat Commun. 7:111782016. View Article : Google Scholar : PubMed/NCBI | |
Shechner DM, Hacisuleyman E, Younger ST and Rinn JL: Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods. 12:664–670. 2015. View Article : Google Scholar : PubMed/NCBI | |
Plummer RJ, Guo Y and Peng Y: A CRISPR reimagining: New twists and turns of CRISPR beyond the genome-engineering revolution. J Cell Biochem. 2017, https://doi.org/10.1002/jcb.26406 View Article : Google Scholar | |
Vojta A, Dobrinić P, Tadić V, Bočkor L, Korać P, Julg B, Klasić M and Zoldoš V: Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44:5615–5628. 2016. View Article : Google Scholar : PubMed/NCBI | |
Amabile A, Migliara A, Capasso P, Biffi M, Cittaro D, Naldini L and Lombardo A: Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell. 167:219–232. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Dadon D, Young RA and Jaenisch R: Editing DNA methylation in the mammalian genome. Cell. 167:233–247. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE and Gersbach CA: Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 33:510–517. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pineda M, Moghadam F, Ebrahimkhani MR and Kiani S: Engineered CRISPR systems for next generation gene therapies. ACS Synth Biol. 6:1614–1626. 2017. View Article : Google Scholar : PubMed/NCBI | |
Beliveau BJ, Joyce EF, Apostolopoulos N, Yilmaz F, Fonseka CY, McCole RB, Chang Y, Li JB, Senaratne TN, Williams BR, et al: Versatile design and synthesis platform for visualizing genomes with oligopaint FISH probes. Proc Natl Acad Sci USA. 109:21301–21306. 2012. View Article : Google Scholar : PubMed/NCBI | |
Heun P, Laroche T, Shimada K, Furrer P and Gasser SM: Chromosome dynamics in the yeast interphase nucleus. Science. 294:2181–2186. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS and Huang B: Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell. 155:1479–1491. 2013. View Article : Google Scholar : PubMed/NCBI | |
Miyanari Y, Ziegler-Birling C and Torres-Padilla ME: Live visualization of chromatin dynamics with fluorescent TALEs. Nat Struct Mol Biol. 20:1321–1324. 2013. View Article : Google Scholar : PubMed/NCBI | |
Roukos V, Voss TC, Schmidt CK, Lee S, Wangsa D and Misteli T: Spatial dynamics of chromosome translocations in living cells. Science. 341:660–664. 2013. View Article : Google Scholar : PubMed/NCBI | |
van Steensel B and Dekker J: Genomics tools for unraveling chromosome architecture. Nat Biotechnol. 28:1089–1095. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nelles DA, Fang MY, O'Connell MR, Xu JL, Markmiller SJ, Doudna JA and Yeo GW: Programmable RNA tracking in live cells with CRISPR/Cas9. Cell. 165:488–496. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Su JH, Zhang F and Zhuang X: An RNA-aptamer-based two-color CRISPR labeling system. Sci Rep. 6:268572016. View Article : Google Scholar : PubMed/NCBI | |
Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H, David E, Salame TM, Tanay A, van Oudenaarden A and Amit I: Dissecting immune circuits by linking CRISPR-pooled screens with single-Cell RNA-Seq. Cell. 167:1883–1896. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guernet A, Mungamuri SK, Cartier D, Sachidanandam R, Jayaprakash A, Adriouch S, Vezain M, Charbonnier F, Rohkin G, Coutant S, et al: CRISPR-barcoding for intratumor genetic heterogeneity modeling and functional analysis of oncogenic driver mutations. Mol Cell. 63:526–538. 2016. View Article : Google Scholar : PubMed/NCBI |