1
|
Pasquale EB: Eph receptor signaling casts
a wide net on cell behavior. Nat Rev Mol Cell Biol. 6:462–475.
2005. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Yamaguchi Y and Pasquale EB: Eph receptors
in the adult brain. Curr Opin Neurobiol. 14:288–296. 2004.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Pasquale EB: Eph-ephrin bidirectional
signaling in physiology and disease. Cell. 133:38–52. 2008.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Egea J and Klein R: Bidirectional
Eph-ephrin signaling during axon guidance. Trends Cell Biol.
17:230–238. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Himanen JP, Saha N and Nikolov DB:
Cell-cell signaling via Eph receptors and ephrins. Curr Opin Cell
Biol. 19:534–542. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Klein R: Bidirectional modulation of
synaptic functions by Eph/ephrin signaling. Nat Neurosci. 12:15–20.
2009. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Chen Y, Fu AK and Ip NY: Eph receptors at
synapses: Implications in neurodegenerative diseases. Cell Signal.
24:606–611. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lai KO and Ip NY: Synapse development and
plasticity: Roles of ephrin/Eph receptor signaling. Curr Opin
Neurobiol. 19:275–283. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Dalva MB, Takasu MA, Lin MZ, Shamah SM, Hu
L, Gale NW and Greenberg ME: EphB receptors interact with NMDA
receptors and regulate excitatory synapse formation. Cell.
103:945–956. 2000. View Article : Google Scholar : PubMed/NCBI
|
10
|
Takasu MA, Dalva MB, Zigmond RE and
Greenberg ME: Modulation of NMDA receptor-dependent calcium influx
and gene expression through EphB receptors. Science. 295:491–495.
2002. View Article : Google Scholar : PubMed/NCBI
|
11
|
Grunwald IC, Korte M, Adelmann G, Plueck
A, Kullander K, Adams RH, Frotscher M, Bonhoeffer T and Klein R:
Hippocampal plasticity requires postsynaptic ephrinBs. Nat
Neurosci. 7:33–40. 2004. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Calò L, Spillantini M, Nicoletti F and
Allen ND: Nurr1 co-localizes with EphB1 receptors in the developing
ventral midbrain, and its expression is enhanced by the EphB1
ligand, ephrinB2. J Neurochem. 92:235–245. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Calò L, Cinque C, Patanè M, Schillaci D,
Battaglia G, Melchiorri D, Nicoletti F and Bruno V: Interaction
between ephrins/Eph receptors and excitatory amino acid receptors:
Possible relevance in the regulation of synaptic plasticity and in
the pathophysiology of neuronal degeneration. J Neurochem. 98:1–10.
2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Du J, Tran T, Fu C and Sretavan DW:
Upregulation of EphB2 and ephrin-B2 at the optic nerve head of
DBA/2J glaucomatous mice coincides with axon loss. Invest
Ophthalmol Vis Sci. 48:5567–5581. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Fu CT, Tran T and Sretavan D: Axonal/glial
upregulation of EphB/ephrin-B signaling in mouse experimental
ocular hypertension. Invest Ophthalmol Vis Sci. 51:991–1001. 2010.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Dong LD, Gao F, Wang XH, Miao Y, Wang SY,
Wu Y, Li F, Wu J, Cheng XL, Sun XH, et al: GluA2 trafficking is
involved in apoptosis of retinal ganglion cells induced by
activation of EphB/EphrinB reverse signaling in a rat chronic
ocular hypertension model. J Neurosci. 35:5409–5421. 2015.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Sappington RM, Sidorova T, Long DJ and
Calkins DJ: TRPV1: Contribution to retinal ganglion cell apoptosis
and increased intracellular Ca2+ with exposure to
hydrostatic pressure. Invest Ophthalmol Vis Sci. 50:717–728. 2009.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Ryskamp DA, Witkovsky P, Barabas P, Huang
W, Koehler C, Akimov NP, Lee SH, Chauhan S, Xing W, Rentería RC, et
al: The polymodal ion channel transient receptor potential
vanilloid 4 modulates calcium flux, spiking rate, and apoptosis of
mouse retinal ganglion cells. J Neurosci. 31:7089–7101. 2011.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Poornima V, Madhupriya M, Kootar S,
Sujatha G, Kumar A and Bera AK: P2×7 receptor-pannexin 1
hemichannel association: Effect of extracellular calcium on
membrane permeabilization. J Mol Neurosci. 46:585–594. 2012.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Bissig D, Goebel D and Berkowitz BA:
Diminished vision in healthy aging is associated with increased
retinal L-type voltage gated calcium channel ion influx. PLoS One.
8:e563402013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tomita G: The optic nerve head in
normal-tension glaucoma. Curr Opin Ophthalmol. 11:116–120. 2000.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang SY, Singh K and Lin SC: The
association between glaucoma prevalence and supplementation with
the oxidants calcium and iron. Invest Ophthalmol Vis Sci.
53:725–731. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chen J, Miao Y, Wang XH and Wang Z:
Elevation of p-NR2A(S1232) by Cdk5/p35 contributes to retinal
ganglion cell apoptosis in a rat experimental glaucoma model.
Neurobiol Dis. 43:455–464. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ji M, Miao Y, Dong LD, Chen J, Mo XF,
Jiang SX, Sun XH, Yang XL and Wang Z: Group I mGluR-mediated
inhibition of Kir channels contributes to retinal Müller cell
gliosis in a rat chronic ocular hypertension model. J Neurosci.
32:12744–12755. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yang W, Li Q, Wang SY, Gao F, Qian WJ, Li
F, Ji M, Sun XH, Miao Y and Wang Z: Cannabinoid receptor agonists
modulate calcium channels in rat retinal Müller cells.
Neuroscience. 313:213–224. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Calò L, Bruno V, Spinsanti P, Molinari G,
Korkhov V, Esposito Z, Patanè M, Melchiorri D, Freissmuth M and
Nicoletti F: Interactions between ephrin-B and metabotropic
glutamate 1 receptors in brain tissue and cultured neurons. J
Neurosci. 25:2245–2254. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hallett PJ and Standaert DG: Rationale for
and use of NMDA receptor antagonists in Parkinson's disease.
Pharmacol Ther. 102:155–174. 2004. View Article : Google Scholar : PubMed/NCBI
|
28
|
Surmeier DJ: Calcium ageing, and neuronal
vulnerability in Parkinson's disease. Lancet Neurol. 6:933–938.
2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Fan MM and Raymond LA:
N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in
Huntington's disease. Prog Neurobiol. 81:272–293. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bezprozvanny I: Inositol
1,4,5-tripshosphate receptor, calcium signalling and Huntington's
disease. Subcell Biochem. 45:323–335. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Bezprozvanny I and Mattson MP: Neuronal
calcium mishandling and the pathogenesis of Alzheimer's disease.
Trends Neurosci. 31:454–463. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Green KN and LaFerla FM: Linking calcium
to Abeta and Alzheimer's disease. Neuron. 59:190–194. 2008.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Delbono O, Garcia J, Appel SH and Stefani
E: IgG from amyotrophic lateral sclerosis affects tubular calcium
channels of skeletal muscle. Am J Physiol. 260:C1347–C1351.
1991.PubMed/NCBI
|
34
|
Arsac C, Raymond C, Martin-Moutot N,
Dargent B, Couraud F, Pouget J and Seagar M: Immunoassays fail to
detect antibodies against neuronal calcium channels in amyotrophic
lateral sclerosis serum. Ann Neurol. 40:695–700. 1996. View Article : Google Scholar : PubMed/NCBI
|
35
|
Mayama C: Calcium channels and their
blockers in intraocular pressure and glaucoma. Eur J Pharmacol.
739:96–105. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hu XQ, Singh N, Mukhopadhyay D and
Akbarali HI: Modulation of voltage-dependent Ca2+
channels in rabbit colonic smooth muscle cells by c-Src and focal
adhesion kinase. J Biol Chem. 273:5337–5342. 1998. View Article : Google Scholar : PubMed/NCBI
|
37
|
Bence-Hanulec KK, Marshall J and Blair LA:
Potentiation of neuronal L calcium channels by IGF-1 requires
phosphorylation of the alpha1 subunit on a specific tyrosine
residue. Neuron. 27:121–131. 2000. View Article : Google Scholar : PubMed/NCBI
|
38
|
Bogdelis A, Treinys R, Stankevičius E,
Jurevičius J and Skeberdis VA: Src family protein tyrosine kinases
modulate L-type calcium current in human atrial myocytes. Biochem
Biophys Res Commun. 413:116–121. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wang Y, Mishra R and Simonson MS:
Ca2+/calmodulin-dependent protein kinase II stimulates
c-fos transcription and DNA synthesis by a Src-based mechanism in
glomerular mesangial cells. J Am Soc Nephrol. 14:28–36. 2003.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Pasek JG, Wang X and Colbran RJ:
Differential CaMKII regulation by voltage-gated calcium channels in
the striatum. Mol Cell Neurosci. 68:234–243. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Blesneac I, Chemin J, Bidaud I, Huc-Brandt
S, Vandermoere F and Lory P: Phosphorylation of the Cav3.2 T-type
calcium channel directly regulates its gating properties. Proc Natl
Acad Sci USA. 112:pp. 13705–13710. 2015; View Article : Google Scholar : PubMed/NCBI
|