1
|
Mobraten K, Haug TM, Kleiveland CR and Lea
T: Omega-3 and omega-6 PUFAs induce the same GPR120-mediated
signalling events, but with different kinetics and intensity in
Caco-2 cells. Lipids Health Dis. 12:1012013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hara T, Hirasawa A, Sun Q, Sadakane K,
Itsubo C, Iga T, Adachi T, Koshimizu TA, Hashimoto T, Asakawa Y and
Tsujimoto G: Novel selective ligands for free fatty acid receptors
GPR120 and GPR40. Naunyn Schmiedebergs Arch Pharmacol. 380:247–255.
2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Liu HD, Wang WB, Xu ZG, Liu CH, He DF, Du
LP, Li MY, Yu X and Sun JP: FFA4 receptor (GPR120): A hot target
for the development of anti-diabetic therapies. Eur J Pharmacol.
763:160–168. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sun Q, Hirasawa A, Hara T, Kimura I,
Adachi T, Awaji T, Ishiguro M, Suzuki T, Miyata N and Tsujimoto G:
Structure-activity relationships of GPR120 agonists based on a
docking simulation. Mol Pharmacol. 78:804–810. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Shimpukade B, Hudson BD, Hovgaard CK,
Milligan G and Ulven T: Discovery of a potent and selective GPR120
agonist. J Med Chem. 55:4511–4515. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Li AJ, Wang Q, Dinh TT, Simasko SM and
Ritter S: Mercaptoacetate blocks fatty acid-induced GLP-1 secretion
in male rats by directly antagonizing GPR40 fatty acid receptors.
Am J Physiol Regul Integr Comp Physiol. 310:R724–R732. 2016.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Iwasaki K, Harada N, Sasaki K, Yamane S,
Iida K, Suzuki K, Hamasaki A, Nasteska D, Shibue K, Joo E, et al:
Free fatty acid receptor GPR120 is highly expressed in
enteroendocrine K cells of the upper small intestine and has a
critical role in GIP secretion after fat ingestion. Endocrinology.
156:837–846. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Oh DY, Talukdar S, Bae EJ, Imamura T,
Morinaga H, Fan W, Li P, Lu WJ, Watkins SM and Olefsky JM: GPR120
is an omega-3 fatty acid receptor mediating potent
anti-inflammatory and insulin-sensitizing effects. Cell.
142:687–698. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Liu Y, Chen LY, Sokolowska M, Eberlein M,
Alsaaty S, Martinez-Anton A, Logun C, Qi HY and Shelhamer JH: The
fish oil ingredient, docosahexaenoic acid, activates cytosolic
phospholipase A2 via GPR120 receptor to produce prostaglandin E2
and plays an anti-inflammatory role in macrophages. Immunology.
143:81–95. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Reers M, Smith TW and Chen LB: J-aggregate
formation of a carbocyanine as a quantitative fluorescent indicator
of membrane potential. Biochemistry. 30:4480–4486. 1991. View Article : Google Scholar : PubMed/NCBI
|
11
|
Smiley ST, Reers M, Mottola-Hartshorn C,
Lin M, Chen A, Smith TW, Steele GD Jr and Chen LB: Intracellular
heterogeneity in mitochondrial membrane potentials revealed by a
J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci USA.
88:pp. 3671–3675. 1991; View Article : Google Scholar : PubMed/NCBI
|
12
|
Novgorodov SA, Gudz TI, Kushnareva YE,
Zorov DB and Kudrjashov YB: Effect of ADP/ATP antiporter
conformational state on the suppression of the nonspecific
permeability of the inner mitochondrial membrane by cyclosporine A.
FEBS Lett. 277:123–126. 1990. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yu W, Zhang X, Liu J, Wang X, Li S, Liu R,
Liao N, Zhang T and Hai C: Cyclosporine a suppressed glucose
oxidase induced P53 mitochondrial translocation and hepatic cell
apoptosis through blocking mitochondrial permeability transition.
Int J Biol Sci. 12:198–209. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Han L, Song S, Niu Y, Meng M and Wang C:
Eicosapentaenoic acid (EPA) induced macrophages activation through
GPR120-mediated Raf-ERK1/2-IKKβ-NF-κB p65 signaling pathways.
Nutrients. 9:pii: E9372017. View Article : Google Scholar
|
15
|
Leist M, Single B, Castoldi AF, Kühnle S
and Nicotera P: Intracellular adenosine triphosphate (ATP)
concentration: A switch in the decision between apoptosis and
necrosis. J Exp Med. 185:1481–1486. 1997. View Article : Google Scholar : PubMed/NCBI
|
16
|
Nicotera P and Leist M: Energy supply and
the shape of death in neurons and lymphoid cells. Cell Death
Differ. 4:435–442. 1997. View Article : Google Scholar : PubMed/NCBI
|
17
|
Skulachev VP: Bioenergetic aspects of
apoptosis, necrosis and mitoptosis. Apoptosis. 11:473–485. 2006.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Nicotera P, Leist M and Ferrando-May E:
Intracellular ATP, a switch in the decision between apoptosis and
necrosis. Toxicol Lett 102–103. 1–142. 1998.
|
19
|
Eguchi Y, Srinivasan A, Tomaselli KJ,
Shimizu S and Tsujimoto Y: ATP-dependent steps in apoptotic signal
transduction. Cancer Res. 59:2174–2181. 1999.PubMed/NCBI
|
20
|
Ernster L and Schatz G: Mitochondria: A
historical review. J Cell Biol. 91:227s–255s. 1981. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kadenbach B, Ramzan R, Moosdorf R and Vogt
S: The role of mitochondrial membrane potential in ischemic heart
failure. Mitochondrion. 11:700–706. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lemasters JJ, Qian T, He L, Kim JS, Elmore
SP, Cascio WE and Brenner DA: Role of mitochondrial inner membrane
permeabilization in necrotic cell death, apoptosis, and autophagy.
Antioxid Redox Signal. 4:769–781. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Nakagawa Y, Suzuki T, Kamimura H and Nagai
F: Role of mitochondrial membrane permeability transition in
N-nitrosofenfluramine-induced cell injury in rat hepatocytes. Eur J
Pharmacol. 529:33–39. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Plin C, Haddad PS, Tillement JP, Elimadi A
and Morin D: Protection by cyclosporin A of mitochondrial and
cellular functions during a cold preservation-warm reperfusion of
rat liver. Eur J Pharmacol. 495:111–118. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Onishi A, Miyamae M, Kaneda K, Kotani J
and Figueredo VM: Direct evidence for inhibition of mitochondrial
permeability transition pore opening by sevoflurane preconditioning
in cardiomyocytes: Comparison with cyclosporine A. Eur J Pharmacol.
675:40–46. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Andreeva L, Tanveer A and Crompton M:
Evidence for the involvement of a membrane-associated
cyclosporin-A-binding protein in the Ca(2+)-activated inner
membrane pore of heart mitochondria. Eur J Biochem. 230:1125–1132.
1995. View Article : Google Scholar : PubMed/NCBI
|
27
|
Halestrap AP, Connern CP, Griffiths EJ and
Kerr PM: Cyclosporin A binding to mitochondrial cyclophilin
inhibits the permeability transition pore and protects hearts from
ischaemia/reperfusion injury. Mol Cell Biochem. 174:167–172. 1997.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Oh DY, Walenta E, Akiyama TE, Lagakos WS,
Lackey D, Pessentheiner AR, Sasik R, Hah N, Chi TJ, Cox JM, et al:
A Gpr120-selective agonist improves insulin resistance and chronic
inflammation in obese mice. Nat Med. 20:942–947. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Im DS: Functions of omega-3 fatty acids
and FFA4 (GPR120) in macrophages. Eur J Pharmacol. 785:36–43. 2016.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Janssen S, Laermans J, Iwakura H, Tack J
and Depoortere I: Sensing of fatty acids for octanoylation of
ghrelin involves a gustatory G-protein. PLoS One. 7:e401682012.
View Article : Google Scholar : PubMed/NCBI
|