1
|
Grossmann KS, Rosario M, Birchmeier C and
Birchmeier W: The tyrosine phosphatase Shp2 in development and
cancer. Adv Cancer Res. 106:53–89. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Tajan M, de Rocca Serra A, Valet P,
Edouard T and Yart A: SHP2 sails from physiology to pathology. Eur
J Med Genet. 58:509–525. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Saxton TM and Pawson T: Morphogenetic
movements at gastrulation require the SH2 tyrosine phosphatase
Shp2. Proc Natl Acad Sci USA. 96:pp. 3790–3795. 1999; View Article : Google Scholar : PubMed/NCBI
|
4
|
Kontaridis MI, Swanson KD, David FS,
Barford D and Neel BG: PTPN11 (Shp2) mutations in LEOPARD syndrome
have dominant negative, not activating, effects. J Biol Chem.
281:6785–6792. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lajiness JD, Snider P, Wang J, Feng GS,
Krenz M and Conway SJ: SHP-2 deletion in postmigratory neural crest
cells results in impaired cardiac sympathetic innervation. Proc
Natl Acad Sci USA. 111:pp. E1374–E1382. 2014; View Article : Google Scholar : PubMed/NCBI
|
6
|
Kusakari S, Saitow F, Ago Y, Shibasaki K,
Sato-Hashimoto M, Matsuzaki Y, Kotani T, Murata Y, Hirai H, Matsuda
T, et al: Shp2 in forebrain neurons regulates synaptic plasticity,
locomotion, and memory formation in mice. Mol Cell Biol.
35:1557–1572. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Li K, Leung AW, Guo Q, Yang W and Li JY:
Shp2-dependent ERK signaling is essential for induction of Bergmann
glia and foliation of the cerebellum. J Neurosci. 34:922–931. 2014.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhu Y, Park J, Hu X, Zheng K, Li H, Cao Q,
Feng GS and Qiu M: Control of oligodendrocyte generation and
proliferation by Shp2 protein tyrosine phosphatase. Glia.
58:1407–1414. 2010.PubMed/NCBI
|
9
|
Rakic P: Elusive radial glial cells:
Historical and evolutionary perspective. Glia. 43:19–32. 2003.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Miyata T, Kawaguchi D, Kawaguchi A and
Gotoh Y: Mechanisms that regulate the number of neurons during
mouse neocortical development. Curr Opin Neurobiol. 20:22–28. 2010.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Barry DS, Pakan JM and McDermott KW:
Radial glial cells: Key organisers in CNS development. Int J
Biochem Cell Biol. 46:76–79. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Guo Z, Wang X, Xiao J, Wang Y, Lu H, Teng
J and Wang W: Early postnatal GFAP-expressing cells produce
multilineage progeny in cerebrum and astrocytes in cerebellum of
adult mice. Brain Res. 1532:14–20. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Gan Q, Lee A, Suzuki R, Yamagami T, Stokes
A, Nguyen BC, Pleasure D, Wang J, Chen HW and Zhou CJ: Pax6
mediates β-catenin signaling for self-renewal and neurogenesis by
neocortical radial glial stem cells. Stem Cells. 32:45–58. 2014.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Way SW, McKenna J III, Mietzsch U, Reith
RM, Wu HC and Gambello MJ: Loss of Tsc2 in radial glia models the
brain pathology of tuberous sclerosis complex in the mouse. Hum Mol
Genet. 18:1252–1265. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhuo L, Theis M, Alvarez-Maya I, Brenner
M, Willecke K and Messing A: hGFAP-cre transgenic mice for
manipulation of glial and neuronal function in vivo. Genesis.
31:85–94. 2001. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wen J, Yang HB, Zhou B, Lou HF and Duan S:
β-catenin is critical for cerebellar foliation and lamination. PLoS
One. 8:e644512013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Casper KB and McCarthy KD: GFAP-positive
progenitor cells produce neurons and oligodendrocytes throughout
the CNS. Mol Cell Neurosci. 31:676–684. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Li FF, Shen J, Shen HJ, Zhang X, Cao R,
Zhang Y, Qui Q, Lin XX, Xie YC, Zhang LH, et al: Shp2 plays an
important role in acute cigarette smoke-mediated lung inflammation.
J Immunol. 189:3159–3167. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Samuels IS, Karlo JC, Faruzzi AN,
Pickering K, Herrup K, Sweatt JD, Saitta SC and Landreth GE:
Deletion of ERK2 mitogen-activated protein kinase identifies its
key roles in cortical neurogenesis and cognitive function. J
Neurosci. 28:6983–6995. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Haziza S, Magnani R, Lan D, Keinan O,
Saada A, Hershkovitz E, Yanay N, Cohen Y, Nevo Y, Houtz RL, et al:
Calmodulin methyltransferase is required for growth, muscle
strength, somatosensory development and brain function. PLoS Genet.
11:e10053882015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Neel BG, Gu H and Pao L: The ‘Shp’ing
news: SH2 domain-containing tyrosine phosphatases in cell
signaling. Trends Biochem Sci. 28:284–293. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Xu H, Yang Y, Tang X, Zhao M, Liang F, Xu
P, Hou B, Xing Y, Bao X and Fan X: Bergmann glia function in
granule cell migration during cerebellum development. Mol
Neurobiol. 47:833–844. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Loeb GE and Tsianos GA: Major remaining
gaps in models of sensorimotor systems. Front Comput Neurosci.
9:702015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Dasen JS: Transcriptional networks in the
early development of sensory-motor circuits. Curr Top Dev Biol.
87:119–148. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Roberts AE, Allanson JE, Tartaglia M and
Gelb BD: Noonan syndrome. Lancet. 381:333–342. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kriegstein A, Noctor S and
Martínez-Cerdeño V: Patterns of neural stem and progenitor cell
division may underlie evolutionary cortical expansion. Nat Rev
Neurosci. 7:883–890. 2006. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Namba T and Huttner WB: Neural progenitor
cells and their role in the development and evolutionary expansion
of the neocortex. Wiley Interdiscip Rev Dev Biol. 6:2016.PubMed/NCBI
|
28
|
Molyneaux BJ, Arlotta P, Menezes JR and
Macklis JD: Neuronal subtype specification in the cerebral cortex.
Nat Rev Neurosci. 8:427–437. 2007. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Sur M and Rubenstein JL: Patterning and
plasticity of the cerebral cortex. Science. 310:805–810. 2005.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Malatesta P and Götz M: Radial glia - from
boring cables to stem cell stars. Development. 140:483–486. 2013.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Qian X, Shen Q, Goderie SK, He W, Capela
A, Davis AA and Temple S: Timing of CNS cell generation: A
programmed sequence of neuron and glial cell production from
isolated murine cortical stem cells. Neuron. 28:69–80. 2000.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Sauvageot CM and Stiles CD: Molecular
mechanisms controlling cortical gliogenesis. Curr Opin Neurobiol.
12:244–249. 2002. View Article : Google Scholar : PubMed/NCBI
|
33
|
Dwyer ND, Chen B, Chou SJ, Hippenmeyer S,
Nguyen L and Ghashghaei HT: Neural stem cells to cerebral cortex:
Emerging mechanisms regulating progenitor behavior and
productivity. J Neurosci. 36:11394–11401. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Guerout N, Li X and Barnabé-Heider F: Cell
fate control in the developing central nervous system. Exp Cell
Res. 321:77–83. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lefloch R, Pouysségur J and Lenormand P:
Single and combined silencing of ERK1 and ERK2 reveals their
positive contribution to growth signaling depending on their
expression levels. Mol Cell Biol. 28:511–527. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang VY and Zoghbi HY: Genetic regulation
of cerebellar development. Nat Rev Neurosci. 2:484–491. 2001.
View Article : Google Scholar : PubMed/NCBI
|