1
|
Dawson TM and Dawson VL: Molecular
pathways of neurodegeneration in Parkinson's disease. Science.
302:819–822. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Armentero MT, Pinna A, Ferré S, Lanciego
JL, Müller CE and Franco R: Past, present and future of A(2A)
adenosine receptor antagonists in the therapy of Parkinson's
disease. Pharmacol Ther. 132:280–299. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Michell AW, Lewis SJ, Foltynie T and
Barker RA: Biomarkers and Parkinson's disease. Brain.
127:1693–1705. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Berendse HW, Booij J, Francot CM, Bergmans
PL, Hijman R, Stoof JC and Wolters EC: Subclinical dopaminergic
dysfunction in asymptomatic Parkinson's disease patients' relatives
with a decreased sense of smell. Ann Neurol. 50:34–41. 2001.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Galvin JE, Lee VM and Trojanowski JQ:
Synucleinopathies: Clinical and pathological implications. Arch
Neurol. 58:186–190. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sathe K, Maetzler W, Lang JD, Mounsey RB,
Fleckenstein C, Martin HL, Schulte C, Mustafa S, Synofzik M,
Vukovic Z, et al: S100B is increased in Parkinson's disease and
ablation protects against MPTP-induced toxicity through the RAGE
and TNF-α pathway. Brain. 135:3336–3347. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Alvarez-Erviti L, Rodriguez-Oroz MC,
Cooper JM, Caballero C, Ferrer I, Obeso JA and Schapira AH:
Chaperone-mediated autophagy markers in Parkinson disease brains.
Arch Neurol. 67:1464–1472. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Malek N, Swallow D, Grosset KA, Anichtchik
O, Spillantini M and Grosset DG: Alpha-synuclein in peripheral
tissues and body fluids as a biomarker for Parkinson's disease-a
systematic review. Acta Neurol Scand. 130:59–72. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Devic I, Hwang H, Edgar JS, Izutsu K,
Presland R, Pan C, Goodlett DR, Wang Y, Armaly J, Tumas V, et al:
Salivary α-synuclein and DJ-1: Potential biomarkers for Parkinson's
disease. Brain. 134:e1782011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Papapetropoulos S, Ffrench-Mullen J,
McCorquodale D, Qin Y, Pablo J and Mash DC: Multiregional gene
expression profiling identifies MRPS6 as a possible candidate gene
for Parkinson's disease. Gene Expr. 13:205–215. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gao L, Zhao G, Fang JS, Yuan TY, Liu AL
and Du GH: Discovery of the neuroprotective effects of alvespimycin
by computational prioritization of potential anti-Parkinson agents.
FEBS J. 281:1110–1122. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Moran LB, Duke DC, Deprez M, Dexter DT,
Pearce RK and Graeber MB: Whole genome expression profiling of the
medial and lateral substantia nigra in Parkinson's disease.
Neurogenetics. 7:1–11. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Irizarry RA, Hobbs B, Collin F,
Beazer-Barclay YD, Antonellis KJ, Scherf U and Speed TP:
Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics. 4:249–264.
2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tibshirani R, Chu G, Narasimhan B and Li
J: SAM: Significance Analysis of Microarrays. Version 2.0. The
Comprehensive R Archive Network. 2011.
|
15
|
Glueck DH, Mandel J, Karimpour-Fard A,
Hunter L and Muller KE: Exact calculations of average power for the
Benjamini-Hochberg procedure. Int J Biostat. 4:Article
112008.PubMed/NCBI
|
16
|
Kanehisa M, Goto S, Sato Y, Furumichi M
and Tanabe M: KEGG for integration and interpretation of
large-scale molecular data sets. Nucleic Acids Res. 40:D109–D114.
2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Huang DW, Sherman BT, Tan Q, Collins JR,
Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC and Lempicki
RA: The DAVID gene functional classification tool: A novel
biological module-centric algorithm to functionally analyze large
gene lists. Genome Biol. 8:R1832007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ashburner M, Ball CA, Blake JA, Botstein
D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT,
et al: Gene ontology: Tool for the unification of biology. The Gene
Ontology Consortium. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Levine M and Tjian R: Transcription
regulation and animal diversity. Nature. 424:147–151. 2003.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Martin TM, Plautz SA and Pannier AK:
Network analysis of endogenous gene expression profiles after
polyethyleneimine-mediated DNA delivery. J Gene Med. 15:142–154.
2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Serrato-Combe A: Lindebmayer
Systems-experimenting with software string rewriting as an assist
to the study and generation of architectural form. Proceedings of
the 9th Iberoamerican Congress of Digital Graphics. SIGRADI; Lima.
pp. 161–166. 2005;
|
22
|
Smoot ME, Ono K, Ruscheinski J, Wang PL
and Ideker T: Cytoscape 2.8: New features for data integration and
network visualization. Bioinformatics. 27:431–432. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Keino-Masu K, Masu M, Hinck L, Leonardo
ED, Chan SS, Culotti JG and Tessier-Lavigne M: Deleted in
colorectal cancer (DCC) encodes a netrin receptor. Cell.
87:175–185. 1996. View Article : Google Scholar : PubMed/NCBI
|
24
|
Xu B, Goldman JS, Rymar VV, Forget C, Lo
PS, Bull SJ, Vereker E, Barker PA, Trudeau LE, Sadikot AF and
Kennedy TE: Critical roles for the netrin receptor deleted in
colorectal cancer in dopaminergic neuronal precursor migration,
axon guidance, and axon arborization. Neuroscience. 169:932–949.
2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Engle EC: Human genetic disorders of axon
guidance. Cold Spring Harb Perspect Biol. 2:a0017842010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Manitt C, Mimee A, Eng C, Pokinko M, Stroh
T, Cooper HM, Kolb B and Flores C: The netrin receptor DCC is
required in the pubertal organization of mesocortical dopamine
circuitry. J Neurosci. 31:8381–8394. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lin L, Lesnick TG, Maraganore DM and
Isacson O: Axon guidance and synaptic maintenance: Preclinical
markers for neurodegenerative disease and therapeutics. Trends
Neurosci. 32:142–149. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lesnick TG, Papapetropoulos S, Mash DC,
Ffrench-Mullen J, Shehadeh L, de Andrade M, Henley JR, Rocca WA,
Ahlskog JE and Maraganore DM: A genomic pathway approach to a
complex disease: Axon guidance and Parkinson disease. PLoS Genet.
3:e982007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sundaresan V, Mambetisaeva E, Andrews W,
Annan A, Knöll B, Tear G and Bannister L: Dynamic expression
patterns of Robo (Robo1 and Robo2) in the developing murine central
nervous system. J Comp Neurol. 468:467–481. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bossers K, Meerhoff G, Balesar R, van
Dongen JW, Kruse CG, Swaab DF and Verhaagen J: Analysis of gene
expression in Parkinson's disease: Possible involvement of
neurotrophic support and axon guidance in dopaminergic cell death.
Brain Pathol. 19:91–107. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Bagri A, Marı́n O, Plump AS, Mak J,
Pleasure SJ, Rubenstein JL and Tessier-Lavigne M: Slit proteins
prevent midline crossing and determine the dorsoventral position of
major axonal pathways in the mammalian forebrain. Neuron.
33:233–248. 2002. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wegner SA, Ehrenberg PK, Chang G, Dayhoff
DE, Sleeker AL and Michael NL: Genomic organization and functional
characterization of the chemokine receptor CXCR4, a major entry
co-receptor for human immunodeficiency virus type 1. J Biol Chem.
273:4754–4760. 1998. View Article : Google Scholar : PubMed/NCBI
|
33
|
Shimoji M, Pagan F, Healton EB and
Mocchetti I: CXCR4 and CXCL12 expression is increased in the
nigro-striatal system of Parkinson's disease. Neurotox Res.
16:318–328. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Bachis A, Aden SA, Nosheny RL, Andrews PM
and Mocchetti I: Axonal transport of human immunodeficiency virus
type 1 envelope protein glycoprotein 120 is found in association
with neuronal apoptosis. J Neurosci. 26:6771–6780. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Nosheny RL, Bachis A, Aden SA, De Bernardi
MA and Mocchetti I: Intrastriatal administration of human
immunodeficiency virus-1 glycoprotein 120 reduces glial cell-line
derived neurotrophic factor levels and causes apoptosis in the
substantia nigra. J Neurobiol. 66:1311–1321. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bezzi P, Domercq M, Brambilla L, Galli R,
Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J
and Volterra A: CXCR4-activated astrocyte glutamate release via
TNFalpha: Amplification by microglia triggers neurotoxicity. Nat
Neurosci. 4:702–710. 2001. View
Article : Google Scholar : PubMed/NCBI
|
37
|
Mizuta I, Takafuji K, Ando Y, Satake W,
Kanagawa M, Kobayashi K, Nagamori S, Shinohara T, Ito C, Yamamoto
M, et al: YY1 binds to α-synuclein 3′-flanking region SNP and
stimulates antisense noncoding RNA expression. J Hum Genet.
58:711–719. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Bezard E, Gross CE, Qin L, Gurevich VV,
Benovic JL and Gurevich EV: L-DOPA reverses the MPTP-induced
elevation of the arrestin2 and GRK6 expression and enhanced ERK
activation in monkey brain. Neurobiol Dis. 18:323–335. 2005.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Managò F, Espinoza S, Salahpour A,
Sotnikova TD, Caron MG, Premont RT and Gainetdinov RR: The role of
GRK6 in animal models of Parkinson's disease and L-DOPA treatment.
Sci Rep. 2:3012012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Tu Y, Li F and Wu C: Nck-2, a novel Src
homology2/3-containing adaptor protein that interacts with the
LIM-only protein PINCH and components of growth factor receptor
kinase-signaling pathways. Mol Biol Cell. 9:3367–3382. 1998.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Ritchie MD: Using prior knowledge and
genome-wide association to identify pathways involved in multiple
sclerosis. Genome Med. 1:652009. View
Article : Google Scholar : PubMed/NCBI
|
42
|
Rearden A, Hurford R, Luu N, Kieu E,
Sandoval M, Perez-Liz G, Del Valle L, Powell H and Langford TD:
Novel expression of PINCH in the central nervous system and its
potential as a biomarker for human immunodeficiency
virus-associated neurodegeneration. J Neurosci Res. 86:2535–2542.
2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Shi L: Dock protein family in brain
development and neurological disease. Commun Integr Biol.
6:e268392013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Brinkman A, van der Flier S, Kok EM and
Dorssers LC: BCAR1, a human homologue of the adapter protein
p130Cas, and antiestrogen resistance in breast cancer cells. J Natl
Cancer Inst. 92:112–120. 2000. View Article : Google Scholar : PubMed/NCBI
|
45
|
Hourani M, Mendes A, Berretta R and
Moscato P: Genetic biomarkers for brain hemisphere differentiation
in Parkinson's disease. AIP Conference Proceedings. 952:pp.
207–216. 2007; View Article : Google Scholar
|
46
|
Wu T and Hallett M: The cerebellum in
Parkinson's disease. Brain. 136:696–709. 2013. View Article : Google Scholar : PubMed/NCBI
|
47
|
Furuichi T, Shiraishi-Yamaguchi Y, Sato A,
Sadakata T, Huang J, Shinoda Y, Hayashi K, Mishima Y, Tomomura M,
Nishibe H and Yoshikawa F: Systematizing and cloning of genes
involved in the cerebellar cortex circuit development. Neurochem
Res. 36:1241–1252. 2011. View Article : Google Scholar : PubMed/NCBI
|
48
|
Scherzer CR, Grass JA, Liao Z, Pepivani I,
Zheng B, Eklund AC, Ney PA, Ng J, McGoldrick M, Mollenhauer B, et
al: GATA transcription factors directly regulate the Parkinson's
disease-linked gene alpha-synuclein. Proc Natl Acad Sci USA.
105:pp. 10907–10912. 2008; View Article : Google Scholar : PubMed/NCBI
|
49
|
Höglinger GU, Breunig JJ, Depboylu C,
Rouaux C, Michel PP, Alvarez-Fischer D, Boutillier AL, Degregori J,
Oertel WH, Rakic P, et al: The pRb/E2F cell-cycle pathway mediates
cell death in Parkinson's disease. Proc Natl Acad Sci USA. 104:pp.
3585–3590. 2007; View Article : Google Scholar : PubMed/NCBI
|
50
|
Zhang W, Zhang J, Kornuc M, Kwan K, Frank
R and Nimer SD: Molecular cloning and characterization of NF-IL3A,
a transcriptional activator of the human interleukin-3 promoter.
Mol Cell Biol. 15:6055–6063. 1995. View Article : Google Scholar : PubMed/NCBI
|
51
|
Hulme DJ, Blair IP, Dawkins JL and
Nicholson GA: Exclusion of NFIL3 as the gene causing hereditary
sensory neuropathy type I by mutation analysis. Hum Genet.
106:594–596. 2000. View Article : Google Scholar : PubMed/NCBI
|
52
|
Hu WC: Parkinson disease is a TH17
dominant autoimmune disorder against accumulated alpha-synuclein.
Nature Preced. 61762011.
|