Autophagy: A new treatment strategy for MSC-based therapy in acute kidney injury (Review)
- Authors:
- Haoyuan Jia
- Yongmin Yan
- Zhaofeng Liang
- Nitin Tandra
- Bin Zhang
- Juanjuan Wang
- Wenrong Xu
- Hui Qian
-
Affiliations: Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China - Published online on: December 19, 2017 https://doi.org/10.3892/mmr.2017.8311
- Pages: 3439-3447
This article is mentioned in:
Abstract
Qian M, Fang X and Wang X: Autophagy and inflammation. Clin Transl Med. 6:242017. View Article : Google Scholar : PubMed/NCBI | |
Tomiyama R, Takakura K, Takatou S, Le TM, Nishiuchi T, Nakamura Y, Konishi T, Matsugo S and Hori O: 3,4-dihydroxybenzalacetone and caffeic acid phenethyl ester induce preconditioning ER stress and autophagy in SH-SY5Y cells. J Cell Physiol. 233:1671–1684. 2018. View Article : Google Scholar : PubMed/NCBI | |
Antikainen H, Driscoll M, Haspel G and Dobrowolski R: TOR-mediated regulation of metabolism in aging. Aging Cell. 16:1219–1233. 2017. View Article : Google Scholar : PubMed/NCBI | |
Germic N, Stojkov D, Oberson K, Yousefi S and Simon HU: Neither eosinophils nor neutrophils require ATG5-dependent autophagy for extracellular DNA trap formation. Immunology. 152:517–525. 2017. View Article : Google Scholar : PubMed/NCBI | |
Long M, Li X, Li L, Dodson M, Zhang DD and Zheng H: Multifunctional p62 effects underlie diverse metabolic diseases. Trends Endocrinol Metab. 28:818–830. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hu ZY, Chen B, Zhang JP and Ma YY: Up-regulation of autophagy-related gene 5 (ATG5) protects dopaminergic neurons in a zebrafish model of Parkinson's disease. J Biol Chem. 292:18062–18074. 2017. View Article : Google Scholar : PubMed/NCBI | |
Choi HS, Jeong EH, Lee TG, Kim SY, Kim HR and Kim CH: Autophagy inhibition with monensin enhances cell cycle arrest and apoptosis induced by mTOR or epidermal growth factor receptor inhibitors in lung cancer cells. Tuberc Respir Dis (Seoul). 75:9–17. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang Z and Choi ME: Autophagy in kidney health and disease. Antioxid Redox Signal. 20:519–537. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huber TB, Edelstein CL, Hartleben B, Inoki K, Jiang M, Koya D, Kume S, Lieberthal W, Pallet N, Quiroga A, et al: Emerging role of autophagy in kidney function, diseases and aging. Autophagy. 8:1009–1031. 2012. View Article : Google Scholar : PubMed/NCBI | |
He L, Wei Q, Liu J, Yi M, Liu Y, Liu H, Sun L, Peng Y, Liu F, Venkatachalam MA and Dong Z: AKI on CKD: Heightened injury, suppressed repair and the underlying mechanisms. Kidney Int. 92:1071–1083. 2017. View Article : Google Scholar : PubMed/NCBI | |
Trongtrakul K, Sawawiboon C, Wang AY, Chitsomkasem A, Limphunudom P, Kurathong S, Prommoon S, Trakarnvanich T and Srisawat N: Acute kidney injury in critically Ill surgical patients: Epidemiology, risk factors and outcomes. Nephrology (Carlton). 2017. View Article : Google Scholar : PubMed/NCBI | |
Deng X, Xie Y and Zhang A: Advance of autophagy in chronic kidney diseases. Ren Fail. 39:306–313. 2017. View Article : Google Scholar : PubMed/NCBI | |
Levine B and Klionsky DJ: Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Dev Cell. 6:463–477. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mizushima N and Komatsu M: Autophagy: Renovation of cells and tissues. Cell. 147:728–741. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, et al: Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev. 90:1383–1435. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sekito T, Kawamata T, Ichikawa R, Suzuki K and Ohsumi Y: Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Genes Cells. 14:525–538. 2009. View Article : Google Scholar : PubMed/NCBI | |
Livingston MJ and Dong Z: Autophagy in acute kidney injury. Semin Nephrol. 34:17–26. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mi N, Chen Y, Wang S, Chen M, Zhao M, Yang G, Ma M, Su Q, Luo S, Shi J, et al: CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat Cell Biol. 17:1112–1123. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sureshbabu A, Ryter SW and Choi ME: Oxidative stress and autophagy: Crucial modulators of kidney injury. Redox Biol. 4:208–214. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ravanan P, Srikumar IF and Talwar P: Autophagy: The spotlight for cellular stress responses. Life Sci. 188:53–67. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tang JC, Feng YL, Liang X and Cai XJ: Autophagy in 5-fluorouracil therapy in gastrointestinal cancer: Trends and challenges. Chin Med J (Engl). 129:456–463. 2016. View Article : Google Scholar : PubMed/NCBI | |
Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gélinas C, Fan Y, et al: Autophagy promotes tumor cell survival and restricts necrosis, inflammation and tumorigenesis. Cancer Cell. 10:51–64. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pla A, Pascual M and Guerri C: Autophagy constitutes a protective mechanism against ethanol toxicity in mouse astrocytes and neurons. PLoS One. 11:e01530972016. View Article : Google Scholar : PubMed/NCBI | |
Shirakabe A, Ikeda Y, Sciarretta S, Zablocki DK and Sadoshima J: Aging and autophagy in the heart. Circ Res. 118:1563–1576. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang XY, Yang H, Wang MG, Yang DB, Wang ZY and Wang L: Trehalose protects against cadmium-induced cytotoxicity in primary rat proximal tubular cells via inhibiting apoptosis and restoring autophagic flux. Cell Death Dis. 8:e30992017. View Article : Google Scholar : PubMed/NCBI | |
de Almeida DC, Donizetti-Oliveira C, Barbosa-Costa P, Origassa CS and Câmara NO: In search of mechanisms associated with mesenchymal stem cell-based therapies for acute kidney injury. Clin Biochem Rev. 34:131–144. 2013.PubMed/NCBI | |
Zhang YL, Zhang J, Cui LY and Yang S: Autophagy activation attenuates renal ischemia-reperfusion injury in rats. Exp Biol Med (Maywood). 240:1590–1598. 2015. View Article : Google Scholar : PubMed/NCBI | |
Guan X, Qian Y, Shen Y, Zhang L, Du Y, Dai H, Qian J and Yan Y: Autophagy protects renal tubular cells against ischemia/reperfusion injury in a time-dependent manner. Cell Physiol Biochem. 36:285–298. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ling H, Chen H, Wei M, Meng X, Yu Y and Xie K: The effect of autophagy on inflammation cytokines in renal ischemia/reperfusion injury. Inflammation. 39:347–356. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jiang M, Liu K, Luo J and Dong Z: Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am J Pathol. 176:1181–1192. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jiang M, Wei Q, Dong G, Komatsu M, Su Y and Dong Z: Autophagy in proximal tubules protects against acute kidney injury. Kidney Int. 82:1271–1283. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chandrika BB, Yang C, Ou Y, Feng X, Muhoza D, Holmes AF, Theus S, Deshmukh S, Haun RS and Kaushal GP: Endoplasmic reticulum stress-induced autophagy provides cytoprotection from chemical hypoxia and oxidant injury and ameliorates renal ischemia-reperfusion injury. PLoS One. 10:e01400252015. View Article : Google Scholar : PubMed/NCBI | |
Kimura T, Takabatake Y, Takahashi A, Kaimori JY, Matsui I, Namba T, Kitamura H, Niimura F, Matsusaka T, Soga T, et al: Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol. 22:902–913. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Hartleben B, Kretz O, Wiech T, Igarashi P, Mizushima N, Walz G and Huber TB: Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy. 8:826–837. 2012. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto T, Urushido M, Ide H, Ishihara M, Hamada-Ode K, Shimamura Y, Ogata K, Inoue K, Taniguchi Y, Taguchi T, et al: Small heat shock protein beta-1 (HSPB1) is upregulated and regulates autophagy and apoptosis of renal tubular cells in acute kidney injury. PLoS One. 10:e01262292015. View Article : Google Scholar : PubMed/NCBI | |
Wang LT, Chen BL, Wu CT, Huang KH, Chiang CK and Hwa Liu S: Protective role of AMP-activated protein kinase-evoked autophagy on an in vitro model of ischemia/reperfusion-induced renal tubular cell injury. PLoS One. 8:e798142013. View Article : Google Scholar : PubMed/NCBI | |
Decuypere JP, Ceulemans LJ, Agostinis P, Monbaliu D, Naesens M, Pirenne J and Jochmans I: Autophagy and the kidney: Implications for ischemia-reperfusion injury and therapy. Am J Kidney Dis. 66:699–709. 2015. View Article : Google Scholar : PubMed/NCBI | |
Isaka Y, Suzuki C, Abe T, Okumi M, Ichimaru N, Imamura R, Kakuta Y, Matsui I, Takabatake Y, Rakugi H, et al: Bcl-2 protects tubular epithelial cells from ischemia/reperfusion injury by dual mechanisms. Transplant Proc. 41:pp. 52–54. 2009; View Article : Google Scholar : PubMed/NCBI | |
Chien CT, Shyue SK and Lai MK: Bcl-xL augmentation potentially reduces ischemia/reperfusion induced proximal and distal tubular apoptosis and autophagy. Transplantation. 84:1183–1190. 2007. View Article : Google Scholar : PubMed/NCBI | |
Suzuki C, Isaka Y, Takabatake Y, Tanaka H, Koike M, Shibata M, Uchiyama Y, Takahara S and Imai E: Participation of autophagy in renal ischemia/reperfusion injury. Biochem Biophys Res Commun. 368:100–106. 2008. View Article : Google Scholar : PubMed/NCBI | |
Turkmen K, Martin J, Akcay A, Nguyen Q, Ravichandran K, Faubel S, Pacic A, Ljubanović D, Edelstein CL and Jani A: Apoptosis and autophagy in cold preservation ischemia. Transplantation. 91:1192–1197. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yu SY, Dong B, Zhou SH and Tang L: LncRNA MALAT1: A potential regulator of autophagy in myocardial ischemia-reperfusion injury. Int J Cardiol. 247:252017. View Article : Google Scholar : PubMed/NCBI | |
Liu XJ, Hong Q, Wang Z, Yu YY, Zou X and Xu LH: MicroRNA-34a suppresses autophagy in tubular epithelial cells in acute kidney injury. Am J Nephrol. 42:168–175. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Hong Q, Wang Z, Yu Y, Zou X and Xu L: MiR-21 inhibits autophagy by targeting Rab11a in renal ischemia/reperfusion. Exp Cell Res. 338:64–69. 2015. View Article : Google Scholar : PubMed/NCBI | |
Arany I and Safirstein RL: Cisplatin nephrotoxicity. Semin Nephrol. 23:460–464. 2003. View Article : Google Scholar : PubMed/NCBI | |
Pabla N and Dong Z: Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney Int. 73:994–1007. 2008. View Article : Google Scholar : PubMed/NCBI | |
Levine B and Yuan J: Autophagy in cell death: An innocent convict? J Clin Invest. 115:2679–2688. 2005. View Article : Google Scholar : PubMed/NCBI | |
Maiuri MC, Zalckvar E, Kimchi A and Kroemer G: Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 8:741–752. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Gu LB, Tu Y, Hu H, Huang YR and Sun W: Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro by activating autophagy. Acta Pharmacol Sin. 37:235–245. 2016. View Article : Google Scholar : PubMed/NCBI | |
Periyasamy-Thandavan S, Jiang M, Wei Q, Smith R, Yin XM and Dong Z: Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int. 74:631–640. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fang B and Xiao H: Rapamycin alleviates cisplatin-induced ototoxicity in vivo. Biochem Biophys Res Commun. 448:443–447. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sprowl JA, Lancaster CS, Pabla N, Hermann E, Kosloske AM, Gibson AA, Li L, Zeeh D, Schlatter E, Janke LJ, et al: Cisplatin-induced renal injury is independently mediated by OCT2 and p53. Clin Cancer Res. 20:4026–4035. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cummings BS and Schnellmann RG: Cisplatin-induced renal cell apoptosis: Caspase 3-dependent and -independent pathways. J Pharmacol Exp Ther. 302:8–17. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jiang M, Wei Q, Wang J, Du Q, Yu J, Zhang L and Dong Z: Regulation of PUMA-alpha by p53 in cisplatin-induced renal cell apoptosis. Oncogene. 25:4056–4066. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jiang M, Yi X, Hsu S, Wang CY and Dong Z: Role of p53 in cisplatin-induced tubular cell apoptosis: Dependence on p53 transcriptional activity. Am J Physiol Renal Physiol. 287:F1140–F1147. 2004. View Article : Google Scholar : PubMed/NCBI | |
Seth R, Yang C, Kaushal V, Shah SV and Kaushal GP: p53-Dependent caspase-2 activation in mitochondrial release of apoptosis-inducing factor and its role in renal tubular epithelial cell injury. J Biol Chem. 280:31230–31239. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wei Q, Dong G, Franklin J and Dong Z: The pathological role of Bax in cisplatin nephrotoxicity. Kidney Int. 72:53–62. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wei Q, Dong G, Yang T, Megyesi J, Price PM and Dong Z: Activation and involvement of p53 in cisplatin-induced nephrotoxicity. Am J Physiol Renal Physiol. 293:F1282–F1291. 2007. View Article : Google Scholar : PubMed/NCBI | |
Feng Z, Zhang H, Levine AJ and Jin S: The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA. 102:pp. 8204–8209. 2005; View Article : Google Scholar : PubMed/NCBI | |
Wei L, Chen W, Zou Y, Huang H, Pan B, Jin S, Huang R, Nie S and Kong G: AMP-activated protein kinase regulates autophagic protection against cisplatin-induced tissue injury in the kidney. Genet Mol Res. 14:12006–12015. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim TW, Kim YJ, Kim HT, Park SR, Lee MY, Park YD, Lee CH and Jung JY: NQO1 deficiency leads enhanced autophagy in cisplatin-induced acute kidney injury through the AMPK/TSC2/mTOR signaling pathway. Antioxid Redox Signal. 24:867–883. 2016. View Article : Google Scholar : PubMed/NCBI | |
Herzog C, Yang C, Holmes A and Kaushal GP: zVAD-fmk prevents cisplatin-induced cleavage of autophagy proteins but impairs autophagic flux and worsens renal function. Am J Physiol Renal Physiol. 303:F1239–F1250. 2012. View Article : Google Scholar : PubMed/NCBI | |
Scaringi L, Cornacchione P, Ayroldi E, Corazzi L, Capodicasa E, Rossi R and Marconi P: Omeprazole induces apoptosis in jurkat cells. Int J Immunopathol Pharmacol. 17:331–342. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bizat N, Galas MC, Jacquard C, Boyer F, Hermel JM, Schiffmann SN, Hantraye P, Blum D and Brouillet E: Neuroprotective effect of zVAD against the neurotoxin 3-nitropropionic acid involves inhibition of calpain. Neuropharmacology. 49:695–702. 2005. View Article : Google Scholar : PubMed/NCBI | |
Madden DT, Egger L and Bredesen DE: A calpain-like protease inhibits autophagic cell death. Autophagy. 3:519–522. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rovetta F, Stacchiotti A, Consiglio A, Cadei M, Grigolato PG, Lavazza A, Rezzani R and Aleo MF: ER signaling regulation drives the switch between autophagy and apoptosis in NRK-52E cells exposed to cisplatin. Exp Cell Res. 318:238–250. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xu QX, Qiu XY, Jiao Z, Zhang M and Zhong MK: FOXP3 rs3761549 polymorphism predicts long-term renal allograft function in patients receiving cyclosporine-based immunosuppressive regimen. Gene. 2017.(Epub ahead of print). | |
Lim SW, Hyoung BJ, Piao SG, Doh KC, Chung BH and Yang CW: Chronic cyclosporine nephropathy is characterized by excessive autophagosome formation and decreased autophagic clearance. Transplantation. 94:218–225. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yadav RK, Lee GH, Lee HY, Li B, Jung HE, Rashid HO, Choi MK, Yadav BK, Kim WH, Kim KW, et al: TMBIM6 (transmembrane BAX inhibitor motif containing 6) enhances autophagy and reduces renal dysfunction in a Cyclosporine A-induced nephrotoxicity model. Autophagy. 11:1760–1774. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yegenaga I, Tuglular S, Ari E, Etiler N, Baykara N, Torlak S, Acar S, Akbas T, Toker K and Solak ZM: Evaluation of sepsis/systemic inflammatory response syndrome, acute kidney injury and RIFLE criteria in two tertiary hospital intensive care units in Turkey. Nephron Clin Pract. 115:c276–c282. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schrier RW and Wang W: Acute renal failure and sepsis. N Engl J Med. 351:159–169. 2004. View Article : Google Scholar : PubMed/NCBI | |
Leventhal JS, Ni J, Osmond M, Lee K, Gusella GL, Salem F and Ross MJ: Autophagy limits endotoxemic acute kidney injury and alters renal tubular epithelial cell cytokine expression. PLoS One. 11:e01500012016. View Article : Google Scholar : PubMed/NCBI | |
Hsiao HW, Tsai KL, Wang LF, Chen YH, Chiang PC, Chuang SM and Hsu C: The decline of autophagy contributes to proximal tubular dysfunction during sepsis. Shock. 37:289–296. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mei S, Livingston M, Hao J, Li L, Mei C and Dong Z: Autophagy is activated to protect against endotoxic acute kidney injury. Sci Rep. 6:221712016. View Article : Google Scholar : PubMed/NCBI | |
Howell GM, Gomez H, Collage RD, Loughran P, Zhang X, Escobar DA, Billiar TR, Zuckerbraun BS and Rosengart MR: Augmenting autophagy to treat acute kidney injury during endotoxemia in mice. PLoS One. 8:e695202013. View Article : Google Scholar : PubMed/NCBI | |
Kern S, Eichler H, Stoeve J, Klüter H and Bieback K: Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 24:1294–1301. 2006. View Article : Google Scholar : PubMed/NCBI | |
Caplan AI: Mesenchymal stem cells. J Orthop Res. 9:641–650. 1991. View Article : Google Scholar : PubMed/NCBI | |
Golpanian S, Wolf A, Hatzistergos KE and Hare JM: Rebuilding the damaged heart: Mesenchymal stem cells, cell-based therapy and engineered heart tissue. Physiol Rev. 96:1127–1168. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gazdic M, Arsenijevic A, Markovic BS, Volarevic A, Dimova I, Djonov V, Arsenijevic N, Stojkovic M and Volarevic V: Mesenchymal stem cell-dependent modulation of liver diseases. Int J Biol Sci. 13:1109–1117. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen C and Hou J: Mesenchymal stem cell-based therapy in kidney transplantation. Stem Cell Res Ther. 7:162016. View Article : Google Scholar : PubMed/NCBI | |
Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, Wang M, Zhou Y, Zhu W, Li W and Xu W: Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev. 22:845–854. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Wang M, Gong A, Zhang X, Wu X, Zhu Y, Shi H, Wu L, Zhu W, Qian H and Xu W: HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells. 33:2158–2168. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Sun X, Cao W, Ma J, Sun L, Qian H, Zhu W and Xu W: Exosomes derived from human umbilical cord mesenchymal stem cells relieve acute myocardial ischemic injury. Stem Cells Int. 2015:7616432015. View Article : Google Scholar : PubMed/NCBI | |
Meirelles Lda S, Fontes AM, Covas DT and Caplan AI: Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 20:419–427. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tögel F, Zhang P, Hu Z and Westenfelder C: VEGF is a mediator of the renoprotective effects of multipotent marrow stromal cells in acute kidney injury. J Cell Mol Med. 13:2109–2114. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bruno S, Grange C, Collino F, Deregibus MC, Cantaluppi V, Biancone L, Tetta C and Camussi G: Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One. 7:e331152012. View Article : Google Scholar : PubMed/NCBI | |
da Costa MR, Pizzatti L, Lindoso RS, Sant'Anna JF, DuRocher B, Abdelhay E and Vieyra A: Mechanisms of kidney repair by human mesenchymal stromal cells after ischemia: A comprehensive view using label-free MS(E). Proteomics. 14:1480–1493. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xing L, Cui R, Peng L, Ma J, Chen X, Xie RJ and Li B: Mesenchymal stem cells, not conditioned medium, contribute to kidney repair after ischemia-reperfusion injury. Stem Cell Res Ther. 5:1012014. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Zou X, Huang Y, Wang F, Miao S, Liu G, Chen M and Zhu Y: Mesenchymal stromal cell-derived extracellular vesicles protect against acute kidney injury through anti-oxidation by enhancing Nrf2/ARE activation in rats. Kidney Blood Press Res. 41:119–128. 2016. View Article : Google Scholar : PubMed/NCBI | |
Moghadasali R, Azarnia M, Hajinasrollah M, Arghani H, Nassiri SM, Molazem M, Vosough A, Mohitmafi S, Najarasl M, Ajdari Z, et al: Intra-renal arterial injection of autologous bone marrow mesenchymal stromal cells ameliorates cisplatin-induced acute kidney injury in a rhesus Macaque mulatta monkey model. Cytotherapy. 16:734–749. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y, Zhang B, Wang M, Mao F, Yan Y, et al: Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther. 4:342013. View Article : Google Scholar : PubMed/NCBI | |
Yao W, Hu Q, Ma Y, Xiong W, Wu T, Cao J and Wu D: Human adipose-derived mesenchymal stem cells repair cisplatin-induced acute kidney injury through antiapoptotic pathways. Exp Ther Med. 10:468–476. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Liu L, Huo Y, Yang Y and Wang Y: Hypoxia-pretreated human MSCs attenuate acute kidney injury through enhanced angiogenic and antioxidative capacities. Biomed Res Int. 2014:4624722014.PubMed/NCBI | |
Qiao PF, Yao L, Zhang XC, Li GD and Wu DQ: Heat shock pretreatment improves stem cell repair following ischemia-reperfusion injury via autophagy. World J Gastroenterol. 21:12822–12834. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao K, Hao H, Liu J, Tong C, Cheng Y, Xie Z, Zang L, Mu Y and Han W: Bone marrow-derived mesenchymal stem cells ameliorate chronic high glucose-induced β-cell injury through modulation of autophagy. Cell Death Dis. 6:e18852015. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhou J, Zhang D, Song Y, She J and Bai C: Bone marrow-derived mesenchymal stem cells enhance autophagy via PI3K/AKT signaling to reduce the severity of ischaemia/reperfusion-induced lung injury. J Cell Mol Med. 19:2341–2351. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shin JY, Park HJ, Kim HN, Oh SH, Bae JS, Ha HJ and Lee PH: Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy. 10:32–44. 2014. View Article : Google Scholar : PubMed/NCBI | |
Park HJ, Shin JY, Kim HN, Oh SH and Lee PH: Neuroprotective effects of mesenchymal stem cells through autophagy modulation in a parkinsonian model. Neurobiol Aging. 35:1920–1928. 2014. View Article : Google Scholar : PubMed/NCBI | |
Park M, Kim YH, Woo SY, Lee HJ, Yu Y, Kim HS, Park YS, Jo I, Park JW, Jung SC, et al: Tonsil-derived mesenchymal stem cells ameliorate CCl4-induced liver fibrosis in mice via autophagy activation. Sci Rep. 5:86162015. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Jia H, Zhang B, Wang J, Ji C, Zhu X, Yan Y, Yin L, Yu J, Qian H and Xu W: Pre-incubated with hucMSC-Exosomes prevent cisplatin-induced nephrotoxicity by activating autophagy. Stem Cell Res Ther. 8:752017. View Article : Google Scholar : PubMed/NCBI | |
Fougeray S and Pallet N: Mechanisms and biological functions of autophagy in diseased and ageing kidneys. Nat Rev Nephrol. 11:34–45. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Xu X and Dong Z: PRKCD/PKCσ contributes to nephrotoxicity during cisplatin chemotherapy by suppressing autophagy. Autophagy. 13:631–632. 2017. View Article : Google Scholar : PubMed/NCBI |