1
|
Eming SA, Martin P and Tomic-Canic M:
Wound repair and regeneration: Mechanisms, signaling, and
translation. Sci Transl Med. 26:265sr62014. View Article : Google Scholar
|
2
|
Leavitt T, Hu MS, Marshall CD, Barnes LA,
Lorenz HP and Longaker MT: Scarless wound healing: Finding the
right cells and signals. Cell Tissue Res. 365:483–493. 2016.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Pereira RF and Bártolo PJ: Traditional
therapies for skin wound healing. Adv Wound Care (New Rochelle).
5:208–229. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gottrup F, Jørgensen B and Karlsmark T:
News in wound healing and management. Curr Opin Support Palliat
Care. 3:300–304. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Reinke JM and Sorg H: Wound repair and
regeneration. Eur Surg Res. 49:35–43. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Johnson A and DiPietro LA: Apoptosis and
angiogenesis: An evolving mechanism for fibrosis. FASEB J.
27:3893–3901. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Landén NX, Li D and Ståhle M: Transition
from inflammation to proliferation: A critical step during wound
healing. Cell Mol Life Sci. 73:3861–3885. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ali N, Hosseini M, Vainio S, Taïeb A,
Cario-André M and Rezvani HR: Skin equivalents: Skin from
reconstructions as models to study skin development and diseases.
Br J Dermatol. 173:391–403. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Cappuzzello C, Doni A, Dander E,
Pasqualini F, Nebuloni M, Bottazzi B, Mantovani A, Biondi A,
Garlanda C and D'Amico G: Mesenchymal stromal cell-derived PTX3
promotes wound healing via fibrin remodeling. J Invest Dermatol.
136:293–300. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Walraven M, Beelen RH and Ulrich MM:
Transforming growth factor-β (TGF-β) signaling in healthy human
fetal skin: A descriptive study. J Dermatol Sci. 78:117–124. 2015.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Honma M, Minami-Hori M, Takahashi H and
Iizuka H: Podoplanin expression in wound and hyperproliferative
psoriatic epidermis: Regulation by TGF-β and STAT-3 activating
cytokines, IFN-γ, IL-6, and IL-22. J Dermatol Sci. 65:134–140.
2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Li PN, Li H, Wu ML, Wang SY, Kong QY,
Zhang Z, Sun Y, Liu J and Lv DC: A cost-effective
transparency-based digital imaging for efficient and accurate wound
area measurement. PLoS One. 7:e380692012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sano S, Chan KS and DiGiovanni J: Impact
of Stat3 activation upon skin biology: A dichotomy of its role
between homeostasis and diseases. J Dermatol Sci. 50:1–14. 2008.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Jacobs AT and Marnett LJ: HSF1-mediated
BAG3 expression attenuates apoptosis in 4-hydroxynonenal-treated
colon cancer cells via stabilization of anti-apoptotic Bcl-2
proteins. J Biol Chem. 284:9176–9183. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Karpel-Massler G, Shu C, Chau L, Banu M,
Halatsch ME, Westhoff MA, Ramirez Y, Ross AH, Bruce JN, Canoll P
and Siegelin MD: Combined inhibition of Bcl-2/Bcl-xL and Usp9X/Bag3
overcomes apoptotic resistance in glioblastoma in vitro and in
vivo. Oncotarget. 6:14507–14521. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Behl C: BAG3 and friends: Co-chaperones in
selective autophagy during aging and disease. Autophagy. 7:795–798.
2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Arimura T, Ishikawa T, Nunoda S, Kawai S
and Kimura A: Dilated cardiomyopathy-associated BAG3 mutations
impair Z-disc assembly and enhance sensitivity to apoptosis in
cardiomyocytes. Hum Mutat. 32:1481–1491. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Behl C: Breaking BAG: The Co-chaperone
BAG3 in health and disease. Trends Pharmacol Sci. 37:672–688. 2016.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Merabova N, Sariyer IK, Saribas AS,
Knezevic T, Gordon J, Turco MC, Rosati A, Weaver M, Landry J and
Khalili K: WW domain of BAG3 is required for the induction of
autophagy in glioma cells. J Cell Physiol. 230:831–841. 2015.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Menon J: Maggot therapy: A literature
review of methods and patient experience. Br J Nurs. 21:S38–S42.
2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sherman RA: Mechanisms of maggot-induced
wound healing: What do we know, and where do we go from here? Evid
Based Complement Alternat Med 2014. 5924192014.
|
22
|
Li PN, Li H, Zhong LX, Sun Y, Yu LJ, Wu
ML, Zhang LL, Kong QY, Wang SY and Lv DC: Molecular events
underlying maggot extract promoted rat in vivo and human in vitro
skin wound healing. Wound Repair Regen. 23:65–73. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Dixon BJ, Chen D, Zhang Y, Flores J,
Malaguit J, Nowrangi D, Zhang JH and Tang J: Intranasal
administration of interferon beta attenuates neuronal apoptosis via
the JAK1/STAT3/BCL-2 pathway in a rat model of neonatal
hypoxic-ischemic encephalopathy. ASN neuro. 8:pii:
17590914166704922016. View Article : Google Scholar
|
24
|
Rosati A, Graziano V, De Laurenzi V,
Pascale M and Turco MC: BAG3: A multifaceted protien that regulates
major cell pathways. Cell Death Dis. 2:e1412011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Campitiello N, Faenza M, Pagliara D, Baldi
C, Zeppa P, Rosati A and Rubino C: Expression of the anti-apoptotic
BAG3 protein in leg venous ulcerative tissues. Cell Death Discov.
2:150682016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lundberg C and Gerdin B: The role of
histamine and serotonin in the inflammatory reaction in an
experimental model of open wounds in the rat. Scand J Plast
Reconstr Surg. 18:175–180. 1984. View Article : Google Scholar : PubMed/NCBI
|
27
|
Li H, Chen XY, Kong QY and Liu J:
Cytopathological evaluations combined RNA and protein analyses on
defined cell regions using single frozen tissue block. Cell Res.
12:117–121. 2002. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhong LX, Zhang Y, Wu ML, Liu YN, Zhang P,
Chen XY, Kong QY, Liu J and Li H: Resveratrol and STAT inhibitor
enhance autophagy in ovarian cancer cells. Cell Death Discov.
2:150712016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Greaves NS, Iqbal SA, Hodgkinson T, Morris
J, Benatar B, Alonso-Rasgado T, Baguneid M and Bayat A: Skin
substitute-assisted repair shows reduced dermal fibrosis in acute
human wounds validated simultaneously by histology and optical
coherence tomography. Wound Repair Regen. 23:483–494. 2015.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Gurtner GC and Chapman MA: Regenerative
medicine: Charting a new course in wound healing. Adv Wound Care
(New Rochelle). 5:314–328. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Rosińczuk J, Taradaj J, Dymarek R and
Sopel M: Mechanoregulation of wound healing and skin homeostasis.
Biomed Res Int. 2016:39434812016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Johnson A and DiPietro LA: Apoptosis and
angiogenesis: An evolving mechanism for fibrosis. FASEB J.
27:3893–3901. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Moseley R, Hilton JR, Waddington RJ,
Harding KG, Stephens P and Thomas DW: Comparison of oxidative
stress biomarker profiles between acute and chronic wound
environments. Wound Repair Regen. 12:419–429. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Luna-Vargas MP and Chipuk JE:
Physiological and pharmacological control of BAK, BAX, and beyond.
Trends Cell Biol. 26:906–917. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
O'Neill KL, Huang K, Zhang J, Chen Y and
Luo X: Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak
through the outer mitochondrial membrane. Genes Dev. 30:973–988.
2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Luna-Vargas MP and Chipuk JE: The deadly
landscape of pro-apoptotic BCL-2 proteins in the outer
mitochondrial membrane. FEBS J. 283:2676–2689. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tahrir FG, Knezevic T, Gupta MK, Gordon J,
Cheung JY, Feldman AM and Khalili K: Evidence for the role of BAG3
in mitochondrial quality control in cardiomyocytes. J Cell Physiol.
232:797–805. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Takagi A, Kume S, Maegawa H and Uzu T:
Emerging role of mammalian autophagy in ketogenesis to overcome
starvation. Autophagy. 12:709–710. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kaushal GP and Shah SV: Autophagy in acute
kidney injury. Kidney Int. 89:779–791. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Tanida I: Autophagosome formation and
molecular mechanism of autophagy. Antioxid Redox Signal.
14:2201–2214. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Gamerdinger M, Carra S and Behl C:
Emerging roles of molecular chaperones and co-chaperones in
selective autophagy: Focus on BAG proteins. J Mol Med (Berl).
89:1175–1182. 2011. View Article : Google Scholar : PubMed/NCBI
|