1
|
Manicklal S, Emery VC, Lazzarotto T,
Boppana SB and Gupta RK: The ‘silent’ global burden of congenital
cytomegalovirus. Clin Microbiol Rev. 26:86–102. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Huang ZR, Yu LP, Yang XC, Zhang F, Chen
YR, Feng F, Qian XS and Cai J: Human cytomegalovirus linked to
stroke in a Chinese population. CNS Neurosci Ther. 18:457–460.
2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Dziurzynski K, Chang SM, Heimberger AB,
Kalejta RF, McGregor Dallas SR, Smit M, Soroceanu L and Cobbs CS:
HCMV and Gliomas Symposium: Consensus on the role of human
cytomegalovirus in glioblastoma. Neuro Oncol. 14:246–255. 2012.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Sinzger C, Digel M and Jahn G:
Cytomegalovirus cell tropism. Curr Top Microbiol Immunol.
325:63–83. 2008.PubMed/NCBI
|
5
|
Gredmark-Russ S and Söderberg-Nauclér C:
Dendritic cell biology in human cytomegalovirus infection and the
clinical consequences for host immunity and pathology. Virulence.
3:621–634. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Dolan A, Cunningham C, Hector RD,
Hassan-Walker AF, Lee L, Addison C, Dargan DJ, McGeoch DJ, Gatherer
D, Emery VC, et al: Genetic content of wild-type human
cytomegalovirus. J Gen Virol. 85:1301–1312. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tomasec P, Wang EC, Davison AJ, Vojtesek
B, Armstrong M, Griffin C, McSharry BP, Morris RJ, Llewellyn-Lacey
S, Rickards C, et al: Downregulation of natural killer
cell-activating ligand CD155 by human cytomegalovirus UL141. Nat
Immunol. 6:181–188. 2005. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Prod'homme V, Sugrue DM, Stanton RJ,
Nomoto A, Davies J, Rickards CR, Cochrane D, Moore M, Wilkinson GW
and Tomasec P: Human cytomegalovirus UL141 promotes efficient
downregulation of the natural killer cell activating ligand CD112.
J Gen Virol. 91:2034–2039. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Nemčovičová I, Benedict CA and Zajonc DM:
Structure of human cytomegalovirus UL141 binding to TRAIL-R2
reveals novel, non-canonical death receptor interactions. PLoS
Pathog. 9:e10032242013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hsu JL, Van den Boomen DJ, Tomasec P,
Weekes MP, Antrobus R, Stanton RJ, Ruckova E, Sugrue D, Wilkie GS,
Davison AJ, et al: Plasma membrane profiling defines an expanded
class of cell surface proteins selectively targeted for degradation
by HCMV US2 in cooperation with UL141. PLoS Pathog.
11:e10048112015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Murrell I, Wilkie GS, Davison AJ, Statkute
E, Fielding CA, Tomasec P, Wilkinson GW and Stanton RJ: Genetic
stability of bacterial artificial chromosome-derived human
cytomegalovirus during culture in vitro. J Virol. 90:3929–3943.
2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang G, Ren G, Cui X, Lu Z, Ma Y, Qi Y,
Huang Y, Liu Z, Sun Z and Ruan Q: Human cytomegalovirus RL13
protein interacts with host NUDT14 protein affecting viral DNA
replication. Mol Med Rep. 13:2167–2174. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ross SA and Boppana SB: Congenital
cytomegalovirus infection: Outcome and diagnosis. Semin Pediatr
Infect Dis. 16:44–49. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang G, Ren G, Cui X, Lu Z, Ma Y, Qi Y,
Huang Y, Liu Z, Sun Z and Ruan Q: Host protein Snapin interacts
with human cytomegalovirus pUL130 and affects viral DNA
replication. J Biosci. 41:173–182. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
McMahon TP and Anders DG: Interactions
between human cytomegalovirus helicase-primase proteins. Virus Res.
86:39–52. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Zavattoni M, Rustico M, Tassis B, Lombardi
G, Furione M, Piralla A and Baldanti F: Risk of congenital disease
in 46 infected fetuses according to gestational age of primary
human cytomegalovirus infection in the mother. J Med Virol.
88:120–126. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Xu LL, Mou WF, Yang L and Wang YC:
Application of HCMV DNA detection in infants' blood, urine and
mothers' breast milk in the diagnosis of HCMV infection among
infants. Zhongguo Dang Dai Er Ke Za Zhi. 15:748–750. 2013.(In
Chinese). PubMed/NCBI
|
19
|
Choudhary A, Pati SK, Patro RK, Deorari AK
and Dar L: Comparison of conventional, immunological and molecular
techniques for the diagnosis of symptomatic congenital human
cytomegalovirus infection in neonates and infants. Indian J Med
Microbiol. 33 Suppl:15–19. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Noriega V, Redmann V, Gardner T and
Tortorella D: Diverse immune evasion strategies by human
cytomegalovirus. Immunol Res. 54:140–151. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wilkinson GW, Tomasec P, Stanton RJ,
Armstrong M, Prod'homme V, Aicheler R, McSharry BP, Rickards CR,
Cochrane D, Llewellyn-Lacey S, et al: Modulation of natural killer
cells by human cytomegalovirus. J Clin Virol. 41:206–212. 2008.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Smith W, Tomasec P, Aicheler R, Loewendorf
A, Nemčovičová I, Wang EC, Stanton RJ, Macauley M, Norris P, Willen
L, et al: Human cytomegalovirus glycoprotein UL141 targets the
TRAIL death receptors to thwart host innate antiviral defenses.
Cell Host Microbe. 13:324–335. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
David R: Immune evasion: UL141 keeps HCMV
in charge. Nat Rev Microbiol. 11:2972013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Loria PM, Duke A, Rand JB and Hobert O:
Two neuronal, nuclear-localized RNA binding proteins involved in
synaptic transmission. Curr Biol. 13:1317–1323. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ladd AN, Charlet N and Cooper TA: The CELF
family of RNA binding proteins is implicated in cell-specific and
developmentally regulated alternative splicing. Mol Cell Biol.
21:1285–1296. 2001. View Article : Google Scholar : PubMed/NCBI
|
26
|
Dasgupta T and Ladd AN: The importance of
CELF control: Molecular and biological roles of the CUG-BP,
Elav-like family of RNA-binding proteins. Wiley Interdiscip Rev
RNA. 3:104–121. 2012. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Gallo JM and Spickett C: The role of CELF
proteins in neurological disorders. RNA Biol. 7:474–479. 2010.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Barron VA, Zhu H, Hinman MN, Ladd AN and
Lou H: The neurofibromatosis type I pre-mRNA is a novel target of
CELF protein-mediated splicing regulation. Nucleic Acids Res.
38:253–264. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kalsotra A, Xiao X, Ward AJ, Castle JC,
Johnson JM, Burge CB and Cooper TA: A postnatal switch of CELF and
MBNL proteins reprograms alternative splicing in the developing
heart. Proc Natl Acad Sci USA. 105:pp. 20333–20338. 2008;
View Article : Google Scholar : PubMed/NCBI
|
30
|
Vlasova-St Louis I, Dickson AM, Bohjanen
PR and Wilusz CJ: CELFish ways to modulate mRNA decay. Biochim
Biophys Acta. 1829:695–707. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kline RA, Kaifer KA, Osman EY, Carella F,
Tiberi A, Ross J, Pennetta G, Lorson CL and Murray LM: Comparison
of independent screens on differentially vulnerable motor neurons
reveals alpha-synuclein as a common modifier in motor neuron
diseases. PLoS Genet. 13:e10066802017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Anderson KN, Baban D, Oliver PL, Potter A
and Davies KE: Expression profiling in spinal muscular atrophy
reveals an RNA binding protein deficit. Neuromuscul Disord.
14:711–722. 2004. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wu J, Li C, Zhao S and Mao B: Differential
expression of the Brunol/CELF family genes during Xenopus laevis
early development. Int J Dev Biol. 54:209–214. 2010. View Article : Google Scholar : PubMed/NCBI
|