1
|
Bhandari V: Hyperoxia-derived lung damage
in preterm infants. Semin Fetal Neonatal Med. 15:223–229. 2010.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Cordingley JJ and Keogh BF: The pulmonary
physician in critical care. 8: Ventilatory management of ALI/ARDS.
Thorax. 57:729–734. 2002. View Article : Google Scholar : PubMed/NCBI
|
3
|
Esteban A, Anzueto A, Alia I, Gordo F,
Apezteguía C, Pálizas F, Cide D, Goldwaser R, Soto L, Bugedo G, et
al: How is mechanical ventilation employed in the intensive care
unit? An international utilization review. Am J Respir Crit Care
Med. 161:1450–1458. 2000. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang H, Liao H, Ochani M, Justiniani M,
Lin X, Yang L, Al-Abed Y, Wang H, Metz C, Miller EJ, et al:
Cholinergic agonists inhibit HMGB1 release and improve survival in
experimental sepsis. Nat Med. 10:1216–1221. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kallet RH and Matthay MA: Hyperoxic acute
lung injury. Respir Care. 58:123–141. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sinclair SE, Altemeier WA, Matute-Bello G
and Chi EY: Augmented lung injury due to interaction between
hyperoxia and mechanical ventilation. Crit Care Med. 32:2496–2501.
2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bhandari V and Elias JA: Cytokines in
tolerance to hyperoxia-induced injury in the developing and adult
lung. Free Radic Biol Med. 41:4–18. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
McGrath-Morrow SA and Stahl J: Apoptosis
in neonatal murine lung exposed to hyperoxia. Am J Respir Cell Mol
Biol. 25:150–155. 2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Radomski A, Sawicki G, Olson DM and
Radomski MW: The role of nitric oxide and metalloproteinases in the
pathogenesis of hyperoxia-induced lung injury in newborn rats. Br J
Pharmacol. 125:1455–1462. 1998. View Article : Google Scholar : PubMed/NCBI
|
10
|
Klings ES, Lowry MH, Li G, Jean JC,
Fernandez BO, Garcia-Saura MF, Feelisch M and Joyce-Brady M:
Hyperoxia-induced lung injury in gamma-glutamyl transferase
deficiency is associated with alterations in nitrosative and
nitrative stress. Am J Pathol. 175:2309–2318. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Allen BW, Demchenko IT and Piantadosi CA:
Two faces of nitric oxide: Implications for cellular mechanisms of
oxygen toxicity. J Appl Physiol (1985). 106:662–667. 2009.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Bhandari V: Molecular mechanisms of
hyperoxia-induced acute lung injury. Front Biosci. 13:6653–6661.
2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
van Zoelen MA, Ishizaka A, Wolthuls EK,
Choi G, van der Poll T and Schultz MJ: Pulmonary levels of
high-mobility group box 1 during mechanical ventilation and
ventilator-associated pneumonia. Shock. 29:441–445. 2008.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Sauve AA, Wolberger C, Schramm VL and
Boeke JD: The biochemistry of sirtuins. Annu Rev Biochem.
75:435–465. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Guarente L and Picard F: Calorie
restriction-the SIR2 connection. Cell. 120:473–482. 2005.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Lin SJ, Defossez PA and Guarente L:
Requirement of NAD and SIR2 for life-span extension by calorie
restriction in Saccharomyces cerevisiae. Science. 289:2126–2128.
2000. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lin SJ, Kaeberlein M, Andalis AA, Sturtz
LA, Defossez PA, Culotta VC, Fink GR and Guarente L: Calorie
restriction extends Saccharomyces cerevisiae lifespan by increasing
respiration. Nature. 418:344–348. 2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Michan S and Sinclair D: Sirtuins in
mammals: Insights into their biological function. Biochem J.
404:1–13. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Taylor DM, Maxwell MM, Luthi-Carter R and
Kazantsev AG: Biological and potential therapeutic roles of sirtuin
deacetylases. Cell Mol Life Sci. 65:4000–4018. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Shi T, Wang F, Stieren E and Tong Q:
SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial
function and thermogenesis in brown adipocytes. J Biol Chem.
280:13560–13567. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Park SH, Ozden O, Jiang H, Cha YI,
Pennington JD, Aykin-Burns N, Spitz DR, Gius D and Kim HS: Sirt3,
mitochondrial ROS, ageing, and carcinogenesis. Int J Mol Sci.
12:6226–6239. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wispé JR, Warner BB, Clark JC, Dey CR,
Neuman J, Glasser SW, Crapo JD, Chang LY and Whitsett JA: Human
Mn-superoxide dismutase in pulmonary epithelial cells of transgenic
mice confers protection from oxygen injury. J Biol Chem.
267:23937–23941. 1992.PubMed/NCBI
|
23
|
Slot JW, Geuze HJ, Freeman BA and Crapo
JD: Intracellular localization of the copper-zinc and manganese
superoxide dismutases in rat liver parenchymal cells. Lab Invest.
55:363–371. 1986.PubMed/NCBI
|
24
|
Oury TD, Chang LY, Marklund SL, Day BJ and
Crapo JD: Immunocytochemical localization of extracellular
superoxide dismutase in human lung. Lab Invest. 70:889–898.
1994.PubMed/NCBI
|
25
|
Kingston RE, Chen CA and Rose JK: Calcium
phosphate transfection. Curr Protoc Mol Biol. 9:9 12003.PubMed/NCBI
|
26
|
Zhang Y, Lin X, Koga K, Takahashi K, Linge
HM, Mello A, Laragione T, Gulko PS and Miller EJ: Strain
differences in alveolar neutrophil infiltration and macrophage
phenotypes in an acute lung inflammation model. Mol Med.
17:780–789. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Mantell LL, Shaffer TH, Horowitz S, Foust
R III, Wolfson MR, Cox C, Khullar P, Zakeri Z, Lin L, Kazzaz JA, et
al: Distinct patterns of apoptosis in the lung during liquid
ventilation compared with gas ventilation. Am J Physiol Lung Cell
Mol Physiol. 283:L31–L41. 2002. View Article : Google Scholar : PubMed/NCBI
|
28
|
Nishina K, Mikawa K, Takao Y, Maekawa N,
Shiga M and Obara H: ONO-5046, an elastase inhibitor, attenuates
endotoxin-induced acute lung injury in rabbits. Anesth Analg.
84:1097–1103. 1997. View Article : Google Scholar : PubMed/NCBI
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Numata M, Suzuki S, Miyazawa N, Miyashita
A, Nagashima Y, Inoue S, Kaneko T and Okubo T: Inhibition of
inducible nitric oxide synthase prevents LPS-induced acute lung
injury in dogs. J Immunol. 160:3031–3037. 1998.PubMed/NCBI
|
31
|
Sun Y, Oberley LW and Li Y: A simple
method for clinical assay of superoxide dismutase. Clin Chem.
34:497–500. 1988.PubMed/NCBI
|
32
|
North BJ and Verdin E: Sirtuins:
Sir2-related NAD-dependent protein deacetylases. Genome Biol.
5:2242004. View Article : Google Scholar : PubMed/NCBI
|
33
|
Vassilopoulos A, Fritz KS, Petersen DR and
Gius D: The human sirtuin family: Evolutionary divergences and
functions. Hum Genomics. 5:485–496. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Feldman JL, Dittenhafer-Reed KE and Denu
JM: Sirtuin catalysis and regulation. J Biol Chem. 287:42419–42427.
2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sauve AA and Youn DY: Sirtuins:
NAD(+)-dependent deacetylase mechanism and regulation. Curr Opin
Chem Biol. 16:535–543. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hallows WC, Albaugh BN and Denu JM: Where
in the cell is SIRT3?-functional localization of an NAD+-dependent
protein deacetylase. Biochem J. 411:e11–e13. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Buler M, Aatsinki SM, Izzi V and Hakkola
J: Metformin reduces hepatic expression of SIRT3, the mitochondrial
deacetylase controlling energy metabolism. PLoS One. 7:e498632012.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Hallows WC, Lee S and Denu JM: Sirtuins
deacetylate and activate mammalian acetyl-CoA synthetases. Proc
Natl Acad Sci USA. 103:pp. 10230–10235. 2006; View Article : Google Scholar : PubMed/NCBI
|
39
|
Davis JM, Rosenfeld WN, Richter SE, Parad
MR, Gewolb IH, Spitzer AR, Carlo WA, Couser RJ, Price A, Flaster E,
et al: Safety and pharmacokinetics of multiple doses of recombinant
human CuZn superoxide dismutase administered intratracheally to
premature neonates with respiratory distress syndrome. Pediatrics.
100:24–30. 1997. View Article : Google Scholar : PubMed/NCBI
|
40
|
Nakamura T and Ogawa Y: Prophylactic
effects of recombinant human superoxide dismutase in neonatal lung
injury induced by the intratracheal instillation of endotoxin in
piglets. Biol Neonate. 80:163–168. 2001. View Article : Google Scholar : PubMed/NCBI
|
41
|
Jacobson JM, Michael JR, Jafri MH Jr and
Gurtner GH: Antioxidants and antioxidant enzymes protect against
pulmonary oxygen toxicity in the rabbit. J Appl Physiol (1985).
68:1252–1259. 1990. View Article : Google Scholar : PubMed/NCBI
|
42
|
Tanswell AK, Olson DM and Freeman BA:
Liposome-mediated augmentation of antioxidant defenses in fetal rat
pneumocytes. Am J Physiol. 258:L165–L172. 1990.PubMed/NCBI
|
43
|
Walther FJ, Gidding CE, Kuipers IM,
Willebrand D, Bevers EM, Abuchowski A and Viau AT: Prevention of
oxygen toxicity with superoxide dismutase and catalase in premature
lambs. J Free Radic Biol Med. 2:289–293. 1986. View Article : Google Scholar : PubMed/NCBI
|
44
|
Freeman BA, Topolosky MK and Crapo JD:
Hyperoxia increases oxygen radical production in rat lung
homogenates. Arch Biochem Biophys. 216:477–484. 1982. View Article : Google Scholar : PubMed/NCBI
|
45
|
Fox RB, Hoidal JR, Brown DM and Repine JE:
Pulmonary inflammation due to oxygen toxicity: Involvement of
chemotactic factors and polymorphonuclear leukocytes. Am Rev Respir
Dis. 123:521–523. 1981.PubMed/NCBI
|
46
|
Mantell LL and Lee PJ: Signal transduction
pathways in hyperoxia-induced lung cell death. Mol Genet Metab.
71:359–370. 2000. View Article : Google Scholar : PubMed/NCBI
|
47
|
Jamieson D: Oxygen toxicity and reactive
oxygen metabolites in mammals. Free Radic Biol Med. 7:87–108. 1989.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Ansari A, Rahman MS, Saha SK, Saikot FK,
Deep A and Kim KH: Function of the SIRT3 mitochondrial deacetylase
in cellular physiology, cancer, and neurodegenerative disease.
Aging Cell. 16:4–16. 2017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Tao R, Coleman MC, Pennington JD, Ozden O,
Park SH, Jiang H, Kim HS, Flynn CR, Hill S, Hayes McDonald W, et
al: Sirt3-mediated deacetylation of evolutionarily conserved lysine
122 regulates MnSOD activity in response to stress. Mol Cell.
40:893–904. 2010. View Article : Google Scholar : PubMed/NCBI
|
50
|
Candas D and Li JJ: MnSOD in oxidative
stress response-potential regulation via mitochondrial protein
influx. Antioxid Redox Signal. 20:1599–1617. 2014. View Article : Google Scholar : PubMed/NCBI
|
51
|
Bause AS, Matsui MS and Haigis MC: The
protein deacetylase SIRT3 prevents oxidative stress-induced
keratinocyte differentiation. J Biol Chem. 288:36484–36491. 2013.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Rahman I and MacNee W: Lung glutathione
and oxidative stress: Implications in cigarette smoke-induced
airway disease. Am J Physiol. 277:L1067–L1088. 1999.PubMed/NCBI
|
53
|
Bargagli E, Olivieri C, Bennett D, Prasse
A, Muller-Quernheim J and Rottoli P: Oxidative stress in the
pathogenesis of diffuse lung diseases: A review. Respir Med.
103:1245–1256. 2009. View Article : Google Scholar : PubMed/NCBI
|
54
|
Mach WJ, Thimmesch AR, Pierce JT and
Pierce JD: Consequences of hyperoxia and the toxicity of oxygen in
the lung. Nurs Res Pract. 2011:2604822011.PubMed/NCBI
|
55
|
Borok Z, Buhl R, Grimes GJ, Bokser AD,
Hubbard RC, Holroyd KJ, Roum JH, Czerski DB, Cantin AM and Crystal
RG: Effect of glutathione aerosol on oxidant-antioxidant imbalance
in idiopathic pulmonary fibrosis. Lancet. 338:215–216. 1991.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Kinnula VL, Fattman CL, Tan RJ and Oury
TD: Oxidative stress in pulmonary fibrosis: A possible role for
redox modulatory therapy. Am J Respir Crit Care Med. 172:417–422.
2005. View Article : Google Scholar : PubMed/NCBI
|
57
|
Johnson LN and Koval M: Cross-talk between
pulmonary injury, oxidant stress, and gap junctional communication.
Antioxid Redox Signal. 11:355–367. 2009. View Article : Google Scholar : PubMed/NCBI
|
58
|
Vivekananda J, Lin A, Coalson JJ and King
RJ: Acute inflammatory injury in the lung precipitated by oxidant
stress induces fibroblasts to synthesize and release transforming
growth factor-alpha. J Biol Chem. 269:25057–25061. 1994.PubMed/NCBI
|
59
|
Guo X, Kesimer M, Tolun G, Zheng X, Xu Q,
Lu J, Sheehan JK, Griffith JD and Li X: The NAD(+)-dependent
protein deacetylase activity of SIRT1 is regulated by its
oligomeric status. Sci Rep. 2:6402012. View Article : Google Scholar : PubMed/NCBI
|
60
|
Sundaresan NR, Gupta M, Kim G, Rajamohan
SB, Isbatan A and Gupta MP: Sirt3 blocks the cardiac hypertrophic
response by augmenting Foxo3a-dependent antioxidant defense
mechanisms in mice. J Clin Invest. 119:2758–2771. 2009.PubMed/NCBI
|
61
|
Zhang B, Cui S, Bai X, Zhuo L, Sun X, Hong
Q, Fu B, Wang J, Chen X and Cai G: SIRT3 overexpression antagonizes
high glucose accelerated cellular senescence in human diploid
fibroblasts via the SIRT3-FOXO1 signaling pathway. Age (Dordr).
35:2237–2253. 2013. View Article : Google Scholar : PubMed/NCBI
|