1
|
Bosch FX, Manos MM, Muñoz N, Sherman M,
Jansen AM, Peto J, Schiffman MH, Moreno V, Kurman R and Shah KV:
Prevalence of human papillomavirus in cervical cancer: A worldwide
perspective. International biological study on cervical cancer
(IBSCC) Study Group. J Natl Cancer Inst. 87:796–802. 1995.
View Article : Google Scholar : PubMed/NCBI
|
2
|
De Villiers EM, Fauquet C, Broker TR,
Bernard HU and Zur Hausen H: Classification of papillomaviruses.
Virology. 324:17–27. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bernard HU, Burk RD, Chen Z, van Doorslaer
Kzur Hausen H and de Villiers EM: Classification of
papillomaviruses (PVs) based on 189 PV types and proposal of
taxonomic amendments. Virology. 401:70–79. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Munoz N, Bosch FX, de Sanjosé S, Herrero
R, Castellsagué X, Shah KV, Snijders PJ and Meijer CJ;
International Agency for Research on Cancer Multicenter Cervical
Cancer Study Group, : Epidemiologic classification of human
papillomavirus types associated with cervical cancer. N Engl J Med.
348:518–527. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Li N, Franceschi S, Howell-Jones R,
Snijders PJ and Clifford GM: Human papillomavirus type distribution
in 30,848 invasive cervical cancers worldwide: Variation by
geographical region, histological type and year of publication. Int
J Cancer. 128:927–935. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Smith JS, Lindsay L, Hoots B, Keys J,
Franceschi S, Winer R and Clifford GM: Human papillomavirus type
distribution in invasive cervical cancer and high-grade cervical
lesions: A meta-analysis update. Int J Cancer. 121:621–632. 2007.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Ojesina AI, Lichtenstein L, Freeman SS,
Pedamallu CS, Imaz-Rosshandler I, Pugh TJ, Cherniack AD, Ambrogio
L, Cibulskis K, Bertelsen B, et al: Landscape of genomic
alterations in cervical carcinomas. Nature. 506:371–375. 2014.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Rusan M, Li YY and Hammerman PS: Genomic
landscape of human papillomavirus-associated cancers. Clin Cancer
Res. 21:2009–2019. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Pande S, Jain N, Prusty BK, Bhambhani S,
Gupta S, Sharma R, Batra S and Das BC: Human papillomavirus type 16
variant analysis of E6, E7, and L1 genes and long control region in
biopsy samples from cervical cancer patients in north India. J Clin
Microbiol. 46:1060–1066. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Boulenouar S, Weyn C, Van Noppen M, Moussa
Ali M, Favre M, Delvenne PO, Bex F, Noël A, Englert Y and Fontaine
V: Effects of HPV-16 E5, E6 and E7 proteins on survival, adhesion,
migration and invasion of trophoblastic cells. Carcinogenesis.
31:473–480. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zehbe I, Wilander E, Delius H and
Tommasino M: Human papillomavirus 16 E6 variants are more prevalent
in invasive cervical carcinoma than the prototype. Cancer Res.
58:829–833. 1998.PubMed/NCBI
|
12
|
Kast WM, Brandt R, Sidney J, Drijfhout JW,
Kubo RT, Grey HM, Melief CJ and Sette A: Role of HLA-A motifs in
identification of potential CTL epitopes in human papillomavirus
type 16 E6 and E7 proteins. J Immunol. 152:3904–3912.
1994.PubMed/NCBI
|
13
|
Conrad M, Bubb V and Schlegel R: The human
papillomavirus type 6 and 16 E5 proteins are membrane-associated
proteins which associate with the 16-kilodalton pore-forming
protein. J Virol. 67:6170–6178. 1993.PubMed/NCBI
|
14
|
Giannoudis A and Simon Herrington CS:
Human papillomavirus variants and squamous neoplasia of the cervix.
J Pathol. 193:295–302. 2001. View Article : Google Scholar : PubMed/NCBI
|
15
|
Xi LF, Schiffman M, Koutsky LA, Hulbert A,
Lee SK, Defilippis V, Shen Z and Kiviat NB: Association of human
papillomavirus type 31 variants with risk of cervical
intraepithelial neoplasia grades 2–3. Int J Cancer. 131:2300–2307.
2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Thompson JD, Gibson TJ, Plewniak F,
Jeanmougin F and Higgins DG: The CLUSTAL_X windows interface:
Flexible strategies for multiple sequence alignment aided by
quality analysis tools. Nucleic Acids Res. 25:4876–4882. 1997.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Tamura K, Stecher G, Peterson D, Filipski
A and Kumar S: MEGA6: Molecular evolutionary genetics analysis
version 6.0. Mol Biol Evol. 30:2725–2729. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kimura M: A simple method for estimating
evolutionary rates of base substitutions through comparative
studies of nucleotide sequences. J Mol Evol. 16:111–120. 1980.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Hamza AA, Robene-Soustrade I, Jouen E,
Lefeuvre P, Chiroleu F, Fisher-Le Saux M, Gagnevin L and Pruvost O:
MultiLocus Sequence Analysis- and Amplified Fragment Length
Polymorphism-based characterization of xanthomonads associated with
bacterial spot of tomato and pepper and their relatedness to
Xanthomonas species. Syst Appl Microbiol. 35:183–190. 2012.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Nei M and Gojobori T: Simple methods for
estimating the numbers of synonymous and nonsynonymous nucleotide
substitutions. Mol Biol Evol. 3:418–426. 1986.PubMed/NCBI
|
21
|
Yamada T, Wheeler CM, Halpern AL, Stewart
AC, Hildesheim A and Jenison SA: Human papillomavirus type 16
variant lineages in United States populations characterized by
nucleotide sequence analysis of the E6, L2, and L1 coding segments.
J Virol. 69:7743–7753. 1995.PubMed/NCBI
|
22
|
Yang Z: PAML 4: Phylogenetic analysis by
maximum likelihood. Mol Biol Evol. 24:1586–1591. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chen Z, Schiffman M, Herrero R, Desalle R,
Anastos K, Segondy M, Sahasrabuddhe VV, Gravitt PE, Hsing AW and
Burk RD: Evolution and taxonomic classification of human
papillomavirus 16 (HPV16)-related variant genomes: HPV31, HPV33,
HPV35, HPV52, HPV58 and HPV67. PLoS One. 6:e201832011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Bosch FX and De Sanjosé S: Chapter 1:
Human papillomavirus and cervical cancer-burden and assessment of
causality. J Natl Cancer Inst Monogr 3–13. 2003. View Article : Google Scholar
|
25
|
Kasap B, Yetimalar H, Keklik A, Yildiz A,
Cukurova K and Soylu F: Prevalence and risk factors for human
papillomavirus DNA in cervical cytology. Eur J Obstet Gynecol
Reprod Biol. 159:168–171. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sichero L, Ferreira S, Trottier H,
Duarte-Franco E, Ferenczy A, Franco EL and Villa LL: High grade
cervical lesions are caused preferentially by non-European variants
of HPVs 16 and 18. Int J Cancer. 120:1763–1768. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chen Z, Wang Q, Ding X, Li Q, Zhong R and
Ren H: Characteristics of HPV prevalence in Sichuan Province,
China. Int J Gynaecol Obstet. 131:277–280. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Bao YP, Li N, Smith JS and Qiao YL; ACCPAB
members, : Human papillomavirus type distribution in women from
Asia: A meta-analysis. Int J Gynecol Cancer. 18:71–79. 2007.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Bruni L, Diaz M, Castellsagué X, Ferrer E,
Bosch FX and de Sanjosé S: Cervical human papillomavirus prevalence
in 5 continents: Meta-analysis of 1 million women with normal
cytological findings. J Infect Dis. 202:1789–1799. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Liu M, He Z, Xi L, Li J, Liu F, Liu Y, Pan
Y, Ning T, Guo C, Xu R, et al: The distribution and common amino
acid polymorphisms of human papillomavirus (HPV)-31 variants in
2700 women from Northern China. PLoS One. 9:e991412014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Xi LF, Koutsky LA, Galloway DA, Kuypers J,
Hughes JP, Wheeler CM, Holmes KK and Kiviat NB: Genomic variation
of human papillomavirus type 16 and risk for high grade cervical
intraepithelial neoplasia. J Natl Cancer Inst. 89:796–802. 1997.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Zehbe I, Tachezy R, Mytilineos J, Voglino
G, Mikyskova I, Delius H, Marongiu A, Gissmann L, Wilander E and
Tommasino M: Human papillomavirus 16 E6 polymorphisms in cervical
lesions from different European populations and their correlation
with human leukocyte antigen class II haplotypes. Int J Cancer.
94:711–716. 2001. View
Article : Google Scholar : PubMed/NCBI
|
33
|
Lee K, Magalhaes I, Clavel C, Briolat J,
Birembaut P, Tommasino M and Zehbe I: Human papillomavirus 16 E6,
L1, L2 and E2 gene variants in cervical lesion progression. Virus
Res. 131:106–110. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chagas BS, Batista MV, Guimarães V,
Balbino VQ, Crovella S and Freitas AC: New variants of E6 and E7
oncogenes of human papillomavirus type 31 identified in
Northeastern Brazil. Gynecol Oncol. 123:284–288. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chagas BS, Batista MV, Crovella S, Gurgel
AP, Silva Neto Jda C, Serra IG, Amaral CM, Balbino VQ, Muniz MT and
Freitas AC: Novel E6 and E7 oncogenes variants of human
papillomavirus type 31 in Brazilian women with abnormal cervical
cytology. Infect Genet Evol. 16:13–18. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ferenczi A, Gyöngyösi E, Szalmás A,
Hernádi Z, Tóth Z, Kónya J and Veress G: Sequence variation of
human papillomavirus type 31 long control region: Phylogenetic and
functional implications. J Med Virol. 85:852–859. 2013. View Article : Google Scholar : PubMed/NCBI
|