1
|
Ryan DP, Hong TS and Bardeesy N:
Pancreatic adenocarcinoma. N Engl J Med. 371:1039–1049. 2014.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Zell JA, Rhen JM, Ziogas A, Lipkin SM and
Anton-Culver H: Race, socioeconomic status, treatment, and survival
time among pancreatic cancer cases in California. Cancer Epidemiol
Biomarkers Prev. 16:546–552. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lau MK, Davila JA and Shaib YH: Incidence
and survival of pancreatic head and body and tail cancers: A
population-based study in the United States. Pancreas. 39:458–462.
2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Quaresma M, Coleman MP and Rachet B:
40-year trends in an index of survival for all cancers combined and
survival adjusted for age and sex for each cancer in England and
Wales, 1971–2011: A population-based study. Lancet. 385:1206–1218.
2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yasuda H: Solid tumor physiology and
hypoxia-induced chemoradio-resistance: Novel strategy for cancer
therapy: Nitric oxide donor as a therapeutic enhancer. Nitric
Oxide. 19:205–216. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Silva P, Mendoza P, Rivas S, Díaz J,
Moraga C, Quest AF and Torres VA: Hypoxia promotes Rab5 activation,
leading to tumor cell migration, invasion and metastasis.
Oncotarget. 7:29548–29562. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rohwer N and Cramer T: Hypoxia-mediated
drug resistance: Novel insights on the functional interaction of
HIFs and cell death pathways. Drug Resist Updat. 14:191–201. 2011.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Trédan O, Galmarini CM, Patel K and
Tannock IF: Drug resistance and the solid tumor microenvironment. J
Natl Cancer Tnst. 99:1441–1454. 2007. View Article : Google Scholar
|
10
|
Zhao Q, Tan BB, Li Y, Fan LQ, Yang PG and
Tian Y: Enhancement of Drug Sensitivity by Knockdown of HIF-1α in
gastric carcinoma cells. Oncol Res. 23:129–136. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Koukourakis MI, Kakouratos C, Kalamida D,
Bampali Z, Mavropoulou S, Sivridis E and Giatromanolaki A:
Hypoxia-inducible proteins HIF1α and lactate dehydrogenase LDH5,
key markers of anaerobic metabolism, relate with stem cell markers
and poor post-radiotherapy outcome in bladder cancer. Int J Radiat
Biol. 92:353–363. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Joshi S, Kumar S, Ponnusamy MP and Batra
SK: Hypoxia-induced oxidative stress promotes MUC4 degradation via
autophagy to enhance pancreatic cancer cells survival. Oncogene.
35:5882–5892. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rani A and Prasad S: CoCl2-induced
biochemical hypoxia down regulates activities and expression of
super oxide dismutase and catalase in cerebral cortex of mice.
Neurochem Res. 39:1787–1796. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yang G, Xu S, Peng L, Li H, Zhao Y and Hu
Y: The hypoxia-mimetic agent CoCl2 induces chemotherapy
resistance in LOVO colorectal cancer cells. Mol Med Rep.
13:2583–2589. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Pang MF, Georgoudaki AM, Lambut L,
Johansson J, Tabor V, Hagikura K, Jin Y, Jansson M, Alexander JS,
Nelson CM, et al: TGF-β1-induced EMT promotes targeted migration of
breast cancer cells through the lymphatic system by the activation
of CCR7/CCL21-mediated chemotaxis. Oncogene. 35:748–760. 2016.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Yilmaz M and Christofori G: EMT, the
cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev.
28:15–33. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang W, Shi X, Peng Y, Wu M, Zhang P, Xie
R, Wu Y, Yan Q, Liu S and Wang J: HIF-1α promotes
epithelial-mesenchymal transition and metastasis through direct
regulation of ZEB1 in colorectal cancer. PLoS One. 10:e01296032015.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Cho KH, Choi MJ, Jeong KJ, Kim JJ, Hwang
MH, Shin SC, Park CG and Lee HY: A ROS/STAT3/HIF-1α signaling
cascade mediates EGF-induced TWIST1 expression and prostate cancer
cell invasion. Prostate. 74:528–536. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Luo Y, Lan L, Jiang YG, Zhao JH, Li MC,
Wei NB and Lin YH: Epithelial-mesenchymal transition and migration
of prostate cancer stem cells is driven by cancer-associated
fibroblasts in an HIF-1α/β-catenin-dependent pathway. Mol Cells.
36:138–144. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hu YY, Fu LA, Li SZ, Chen Y, Li JC, Han J,
Liang L, Li L, Ji CC, Zheng MH and Han H: Hif-1α and Hif-2α
differentially regulate Notch signaling through competitive
interaction with the intracellular domain of Notch receptors in
glioma stem cells. Cancer Lett. 349:67–76. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tian Q, Xue Y, Zheng W, Sun R, Ji W, Wang
X and An R: Overexpression of hypoxia-inducible factor 1α induces
migration and invasion through Notch signaling. Int J Oncol.
47:728–738. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Giachino C, Boulay JL, Ivanek R, Alvarado
A, Tostado C, Lugert S, Tchorz J, Coban M, Mariani L, Bettler B, et
al: A tumor suppressor function for Notch signaling in forebrain
tumor subtypes. Cancer Cell. 28:730–742. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhou J, Jain S, Azad AK, Xu X, Yu HC, Xu
Z, Godbout R and Fu Y: Notch and TGFβ form a positive regulatory
loop and regulate EMT in epithelial ovarian cancer cells. Cell
Signal. 28:838–849. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ishida T, Hijioka H, Kume K, Miyawaki A
and Nakamura N: Notch signaling induces EMT in OSCC cell lines in a
hypoxic environment. Oncol Lett. 6:1201–1206. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Braunschweig L, Meyer AK, Wagenführ L and
Storch A: Oxygen regulates proliferation of neural stem cells
through Wnt/β-catenin signalling. Mol Cell Neurosci. 67:84–92.
2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Qiu Y, Chen Y, Zeng T, Guo W, Zhou W and
Yang X: High mobility group box-B1 (HMGB1) mediates the
hypoxia-induced mesenchymal transition of osteoblast cells via
activating ERK/JNK signaling. Cell Biol Int. 40:1152–1161. 2016.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Xie J, Xiao Y, Zhu XY, Ning ZY, Xu HF and
Wu HM: Hypoxia regulates stemness of breast cancer MDA-MB-231
cells. Med Oncol. 33:422016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Li H, Li J, Liu X, Chen J, Wu C and Guo X:
Effect of PTEN and KAI1 gene overexpression on the proliferation,
metastasis and radiosensitivity of ASPC-1 pancreatic cancer cells
under hypoxic conditions. Mol Med Rep. 10:1973–1977. 2014.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Kang H, Lee M and Jang SW: Celastrol
inhibits TGF-β1-induced epithelial-mesenchymal transition by
inhibiting Snail and regulating E-cadherin expression. Biochem
Biophys Res Commun. 437:550–556. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Galván JA, Zlobec I, Wartenberg M, Lugli
A, Gloor B, Perren A and Karamitopoulou E: Expression of E-cadherin
repressors SNAIL, ZEB1 and ZEB2 by tumour and stromal cells
influences tumour-budding phenotype and suggests heterogeneity of
stromal cells in pancreatic cancer. Br J Cancer. 112:1944–1950.
2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ji Q, Liu X, Han Z, Zhou L, Sui H, Yan L,
Jiang H, Ren J, Cai J and Li Q: Resveratrol suppresses
epithelial-to-mesenchymal transition in colorectal cancer through
TGF-β1/Smads signaling pathway mediated Snail/E-cadherin
expression. BMC Cancer. 15:972015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Xu X, Tan X, Tampe B, Sanchez E, Zeisberg
M and Zeisberg EM: Snail Is a direct target of hypoxia-inducible
factor 1α (HIF1α) in hypoxia-induced endothelial to mesenchymal
transition of human coronary endothelial cells. J Biol Chem.
290:16653–16664. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wen Z, Feng S, Wei L, Wang Z, Hong D and
Wang Q: Evodiamine, a novel inhibitor of the Wnt pathway, inhibits
the self-renewal of gastric cancer stem cells. Int J Mol Med.
36:1657–1663. 2015. View Article : Google Scholar : PubMed/NCBI
|