1
|
Borchers AT, Keen CL, Huntley AC and
Gershwin ME: Lyme disease: A rigorous review of diagnostic criteria
and treatment. J Autoimmun. 57:82–115. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Pal U, Wang P, Bao F, Yang X, Samanta S,
Schoen R, Wormser GP, Schwartz I and Fikrig E: Borrelia burgdorferi
basic membrane proteins A and B participate in the genesis of Lyme
arthritis. J Exp Med. 205:133–141. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ramamoorthi N, Narasimhan S, Pal U, Bao F,
Yang XF, Fish D, Anguita J, Norgard MV, Kantor FS, Anderson JF, et
al: The Lyme disease agent exploits a tick protein to infect the
mammalian host. Nature. 436:573–577. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lantos PM, Shapiro ED, Auwaerter PG, Baker
PJ, Halperin JJ, McSweegan E and Wormser GP: Unorthodox alternative
therapies marketed to treat Lyme disease. Clin Inf Dis.
60:1776–1782. 2015. View Article : Google Scholar
|
5
|
Marques AR: Lyme neuroborreliosis.
Continuum (Minneap Minn). 21(6 Neuroinfectious Disease): 1–1744.
2015.
|
6
|
Bremell D and Dotevall L: Oral doxycycline
for Lyme neuroborreliosis with symptoms of encephalitis, myelitis,
vasculitis or intracranial hypertension. Eur J Neurol.
21:1162–1167. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Cerar T, Ogrinc K, Lotričfurlan S,
Lotric-Furlan S, Kobal J, Levicnik-Stezinar S, Strle F and
Ruzić-Sabljic E: Diagnostic value of cytokines and chemokines in
Lyme neuroborreliosis. Clin Vaccine Immunol. 20:1578–1584. 2013.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Kim C, Cho ED, Kim HK, You S, Lee HJ,
Hwang D and Lee SJ: β1-integrin-dependent migration of microglia in
response to neuron-released α-synuclein. Exp Mol Med. 46:e912014.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Togna AR, Latina V, Trefiletti G, Guiso M,
Moschini S and Togna GI: 1-Phenil-6,7-dihydroxy-isochroman inhibits
inflammatory activation of microglia. Brain Res Bull. 95:33–39.
2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Brissette CA, Houdek HM, Floden AM and
Rosenberger TA: Acetate supplementation reduces microglia
activation and brain interleukin-1β levels in a rat model of Lyme
neuroborreliosis. J Neuroinflammation. 9:2492012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kuhlow CJ, Garcia-Monco JC, Coleman JL and
Benach JL: Murine microglia are effective phagocytes for Borrelia
burgdorferi. J Neuroimmunol. 168:183–187. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Battisti JM, Bono JL, Rosa PA, Schrumpf
ME, Schwan TG and Policastro PF: Outer surface protein A protects
Lyme disease spirochetes from acquired host immunity in the tick
vector. Infect Immun. 76:5228–5237. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhao H, Liu A, Cui Y, Liang Z, Li B and
Bao F: Borrelia burgdorferi basic membrane protein A could induce
chemokine production in murine microglia cell line BV2. Microb
Pathog. 111:174–181. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Simpson WJ, Schrumpf ME and Schwan TG:
Reactivity of human Lyme borreliosis sera with a 39-kilodalton
antigen specific to Borrelia burgdorferi. J Clin Microbiol.
28:1329–1337. 1990.PubMed/NCBI
|
15
|
Yang X, Izadi H, Coleman AS, Wang P, Ma Y,
Fikrig E, Anguita J and Pal U: Borrelia burgdorferi lipoprotein
BmpA activates pro-inflammatory responses in human synovial cells
through a protein moiety. Microbes Infect. 10:1300–1308. 2008.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Baldwin AS Jr: The NF-kappa B and I kappa
B proteins: New discoveries and insights. Annu Rev Immunol.
14:649–683. 1996. View Article : Google Scholar : PubMed/NCBI
|
17
|
Whiteside ST, Epinat JC, Rice NR and
Israël A: I kappa B epsilon, a novel member of the I kappa B
family, controls RelA and cRel NF-kappa B activity. EMBO J.
16:1413–1426. 1997. View Article : Google Scholar : PubMed/NCBI
|
18
|
Bell S, Degitz K, Quirling M, Jilg N, Page
S and Brand K: Involvement of NF-kappaB signaling in skin
physiology and disease. Cell Signal. 15:1–7. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Vinayagamoorthi R, Koner BC, Kavitha S,
Nandakumar DN, Padma Priya P and Goswami K: Potentiation of humoral
immune response and activation of NF-kappaB pathway in lymphocytes
in experimentally induced hyperthyroid rats. Cell Immunol.
238:56–60. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Colleran A, Collins PE and Carmody RJ:
Assessing Sites of NF-κB DNA binding using chromatin
immunoprecipitation. Methods Mol Biol. 1280:47–59. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Leal VO, Saldanha JF, Stockler-Pinto MB,
Cardozo LF, Santos FR, Albuquerque AS, Leite M Jr and Mafra D: NRF2
and NF-κB mRNA expression in chronic kidney disease: A focus on
nondialysis patients. Int Urol Nephrol. 47:1985–1991. 2015.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Naranjo V, Ayllón N, Pérez de la Lastra
JM, Galindo RC, Kocan KM, Blouin EF, Mitra R, Alberdi P, Villar M
and de la Fuente J: Reciprocal regulation of NF-kB (Relish) and
subolesin in the tick vector, Ixodes scapularis. PLoS One.
8:e659152013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Irvine M, Okitsu C and Hsieh CL: Q-PCR in
combination with ChIP assays to detect changes in chromatin
acetylation. Methods Mol Biol. 791:213–223. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Eaton SL, Roche SL, Llavero Hurtado M,
Oldknow KJ, Farquharson C, Gillingwater TH and Wishart TM: Total
protein analysis as a reliable loading control for quantitative
fluorescent western blotting. PLoS One. 8:e724572013. View Article : Google Scholar : PubMed/NCBI
|
25
|
G5: ding Control for Quantitative
Fluorescent Western Blotting. Plos One. 8:e724572013.238: 56–605,
2097. and brain interleukin-1β lev View Article : Google Scholar : PubMed/NCBI
|
26
|
Vigelsø A, Dybboe R, Hansen CN, Dela F,
Helge JW and Guadalupe Grau A: GAPDH and β-actin protein decreases
with aging, making stain-free technology a superior loading control
in Western blotting of human skeletal muscle. J Appl Physiol
(1985). 118:386–394. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Rivero-Gutiérrez B, Anzola A,
Martínez-Augustin O and de Medina FS: Stain-free detection as
loading control alternative to Ponceau and housekeeping protein
immunodetection in Western blotting. Anal Biochem. 467:1–3. 2014.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Ruzehaji N, Avouac J, Elhai M, Frechet M,
Frantz C, Ruiz B, Distler JH and Allanore Y: Combined effect of
genetic background and gender in a mouse model of bleomycin-induced
skin fibrosis. Arthritis Res Ther. 17:1452015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Peri S, Devarajan K, Yang DH, Knudson AG
and Balachandran S: Meta-analysis Identifies NF-κB as a therapeutic
target in renal cancer. PLoS One. 8:e767462013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Murqueitio MS, Ebner S, Hörtnagl P, Rakers
C, Bruckner R, Henneke P, Wolber G and Santos-Sierra S: Enhanced
immunostimulatory activity of in silico discovered agonists of
Toll-like receptor 2 (TLR2). Biochim Biophys Acta. 1861:2680–2689.
2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ottonello L, Bertolotto M, Montecucco F,
Bianchi G and Dallegri F: Delayed apoptosis of human monocytes
exposed to immune complexes is reversed by oxaprozin: Role of the
Akt/IkappaB kinase/nuclear factor kappaB pathway. Br J Pharmacol.
157:294–306. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Carvalho L, Jacinto A and Matova N: The
toll/NF-κB signaling pathway is required for epidermal wound repair
in Drosophila. Proc Natl Acad Sci USA. 111:pp. E5373–E5382. 2014;
View Article : Google Scholar : PubMed/NCBI
|
33
|
Baum E, Hue F and Barbour AG: Experimental
infections of the reservoir species Peromyscus leucopus with
diverse strains of Borrelia burgdorferi, a Lyme disease agent.
MBio. 3:e00434–12. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Bernardino AL, Myers TA, Alvarez X,
Hasegawa A and Philipp MT: Toll-like receptors: Insights into their
possible role in the pathogenesis of lyme neuroborreliosis. Infect
Immun. 76:4385–4395. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Rasley A, Marriott I, Halberstadt CR, Bost
KL and Anguita J: Substance P augments Borrelia burgdorferi-induced
prostaglandin E2 production by murine microglia. J Immunol.
172:5707–5713. 2004. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sun J, Ramnath RD, Zhi L, Tamizhselvi R
and Bhatia M: Substance P enhances NF-kappaB transactivation and
chemokine response in murine macrophages via ERK1/2 and p38 MAPK
signaling pathways. Am J Physiol Cell Physiol. 294:C1586–C1596.
2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Sadik CD, Hunfeld KP, Bachmann M, Kraiczy
P, Eberhardt W, Brade V, Pfeilschifter J and Mühl H: Systematic
analysis highlights the key role of TLR2/NF-kappaB/MAP kinase
signaling for IL-8 induction by macrophage-like THP-1 cells under
influence of Borrelia burgdorferi lysates. Int J of Biochem Cell
Biol. 40:2508–2521. 2008. View Article : Google Scholar
|