1
|
Jensen TS, Baron R, Haanpää M, Kalso E,
Loeser JD, Rice AS and Treede RD: A new definition of neuropathic
pain. Pain. 152:2204–2205. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Finnerup NB, Sindrup SH and Jensen TS: The
evidence for pharmacological treatment of neuropathic pain. Pain.
150:573–581. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
De Vry J, Kuhl E, Franken-Kunkel P and
Eckel G: Pharmacological characterization of the chronic
constriction injury model of neuropathic pain. Eur J Pharmacol.
491:137–148. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Austin PJ, Wu A and Moalem-Taylor G:
Chronic constriction of the sciatic nerve and pain hypersensitivity
testing in rats. J Vis Exp:. 13:33932012.
|
5
|
Melemedjian OK, Asiedu MN, Tillu DV,
Sanoja R, Yan J, Lark A, Khoutorsky A, Johnson J, Peebles KA, Lepow
T, et al: Targeting adenosine monophosphate-activated protein
kinase (AMPK) in preclinical models reveals a potential mechanism
for the treatment of neuropathic pain. Mol Pain. 7:702011.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Taylor A, Westveld AH, Szkudlinska M,
Guruguri P, Annabi E, Patwardhan A, Price TJ and Yassine HN: The
use of metformin is associated with decreased lumbar radiculopathy
pain. J Pain Res. 6:755–763. 2013.PubMed/NCBI
|
7
|
Kim J, Yang G, Kim Y, Kim J and Ha J: AMPK
activators: Mechanisms of action and physiological activities. Exp
Mol Med. 48:e2242016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Dasgupta B and Chhipa RR: Evolving Lessons
on the complex role of AMPK in normal physiology and cancer. Trends
Pharmacol Sci. 37:192–206. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Price TJ and Dussor G: AMPK: An emerging
target for modification of injury-induced pain plasticity. Neurosci
Lett. 557:9–18. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Bullón P, Alcocer-Gómez E, Carrión AM,
Marín-Aguilar F, Garrido-Maraver J, Román-Malo L, Ruiz-Cabello J,
Culic O, Ryffel B, Apetoh L, et al: AMPK phosphorylation modulates
pain by activation of NLRP3 inflammasome. Antioxid Redox Signal.
24:157–170. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Song H, Han Y, Pan C, Deng X, Dai W, Hu L,
Jiang C, Yang Y, Cheng Z, Li F, et al: Activation of adenosine
monophosphate-activated protein kinase suppresses neuroinflammation
and ameliorates bone cancer pain. Anesthesiology. 123:1170–1185.
2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hawley SA, Ross FA, Chevtzoff C, Green KA,
Evans A, Fogarty S, Towler MC, Brown LJ, Ogunbayo OA, Evans AM and
Hardie DG: Use of cells expressing gamma subunit variants to
identify diverse mechanisms of AMPK activation. Cell Metab.
11:554–565. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Krishan S, Richardson DR and Sahni S:
Adenosine monophosphate-activated kinase and its key role in
catabolism: structure, regulation, biological activity and
pharmacological activation. Mol Pharmacol. 87:363–377. 2015.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu Q, Yuan W, Tong D, Liu G, Lan W, Zhang
D, Xiao H, Zhang Y, Huang Z, Yang J, et al: Metformin represses
bladder cancer progression by inhibiting stem cell repopulation via
COX2/PGE2/STAT3 axis. Oncotarget. 7:282352016.PubMed/NCBI
|
15
|
Park J, Kim WG, Zhao L, Enomoto K,
Willingham M and Cheng SY: Metformin blocks progression of
obesity-activated thyroid cancer in a mouse model. Oncotarget.
7:348322016.PubMed/NCBI
|
16
|
Liu S, Li Q, Zhang MT, Mao-Ying QL, Hu LY,
Wu GC, Mi WL and Wang YQ: Curcumin ameliorates neuropathic pain by
down-regulating spinal IL-1β via suppressing astroglial NALP1
inflammasome and JAK2-STAT3 signalling. Sci Rep. 6:289562016.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Tsuda M, Kohro Y, Yano T, Tsujikawa T,
Kitano J, Tozaki-Saitoh H, Koyanagi S, Ohdo S, Ji RR, Salter MW and
Inoue K: JAK-STAT3 pathway regulates spinal astrocyte proliferation
and neuropathic pain maintenance in rats. Brain. 134:1127–1139.
2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang ZF, Li Q, Liu SB, Mi WL, Hu S, Zhao
J, Tian Y, Mao-Ying QL, Jiang JW, Ma HJ, et al: Aspirin-triggered
Lipoxin A4 attenuates mechanical allodynia in association with
inhibiting spinal JAK2/STAT3 signaling in neuropathic pain in rats.
Neuroscience. 273:65–78. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Park KW, Lin CY and Lee YS: Expression of
suppressor of cytokine signaling-3 (SOCS3) and its role in neuronal
death after complete spinal cord injury. Exp Neurol. 261:65–75.
2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Alfonso Romero-Sandoval E and Sweitzer S:
Nonneuronal central mechanisms of pain: Glia and immune response.
Prog Mol Biol Transl Sci. 131:325–358. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Walters ET: Neuroinflammatory
contributions to pain after SCI: Roles for central glial mechanisms
and nociceptor-mediated host defense. Exp Neurol. 258:48–61. 2014.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Gui Y, Li A, Chen F, Zhou H, Tang Y, Chen
L, Chen S and Duan S: Involvement of AMPK/SIRT1 pathway in
anti-allodynic effect of troxerutin in CCI-induced neuropathic
pain. Eur J Pharmacol. 769:234–241. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Molet J, Mauborgne A, Diallo M, Armand V,
Geny D, Villanueva L, Boucher Y and Pohl M: Microglial Janus
kinase/signal transduction and activator of transcription 3 pathway
activity directly impacts astrocyte and spinal neuron
characteristics. J Neurochem. 136:133–147. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Gerard E, Spengler RN, Bonoiu AC, Mahajan
SD, Davidson BA, Ding H, Kumar R, Prasad PN, Knight PR and
Ignatowski TA: Chronic constriction injury-induced nociception is
relieved by nanomedicine-mediated decrease of rat hippocampal tumor
necrosis factor. Pain. 156:1320–1333. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hargreaves K, Dubner R, Brown F, Flores C
and Joris J: A new and sensitive method for measuring thermal
nociception in cutaneous hyperalgesia. Pain. 32:77–88. 1988.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang T, Sun K, Shen W, Qi L, Yin W and
Wang LW: SOCS1 regulates neuropathic pain by inhibiting neuronal
sensitization and glial activation in mouse spinal cord. Brain Res
Bull. 124:231–237. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Cao H and Zhang YQ: Spinal glial
activation contributes to pathological pain states. Neurosci
Biobehav Rev. 32:972–983. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Benarroch EE: Dorsal horn circuitry
Complexity and implications for mechanisms of neuropathic pain.
Neurology. 86:1060–1069. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
West SJ, Bannister K, Dickenson AH and
Bennett DL: Circuitry and plasticity of the dorsal horn-Toward a
better understanding of neuropathic pain. Neuroscience.
300:254–275. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Martin M and Marais R: Metformin: A
diabetes drug for cancer, oral cancer drug for diabetics? J Clin
Oncol. 30:2698–2700. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wan W, Cao L, Khanabdali R, Kalionis B,
Tai X and Xia S: The emerging role of HMGB1 in neuropathic pain: A
Potential therapeutic target for neuroinflammation. J Immunol Res.
2016:64304232016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhou YQ, Liu Z, Liu ZH, Chen SP, Li M,
Shahveranov A, Ye DW and Tian YK: Interleukin-6: An emerging
regulator of pathological pain. J Neuroinflammation. 13:1412016.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Edelmayer RM, Brederson JD, Jarvis MF and
Bitner RS: Biochemical and pharmacological assessment of MAP-kinase
signaling along pain pathways in experimental rodent models: A
potential tool for the discovery of novel antinociceptive
therapeutics. Biochem Pharmacol. 87:390–398. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lin X, Wang M, Zhang J and Xu R: p38 MAPK:
A potential target of chronic pain. Curr Med Chem. 21:4405–4418.
2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lisi L, Aceto P, Navarra P and Dello Russo
C: MTOR kinase: A possible pharmacological target in the management
of chronic pain. Biomed Res Int. 2015:3942572015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sanna MD, Stark H, Lucarini L, Ghelardini
C, Masini E and Galeotti N: Histamine H4 receptor activation
alleviates neuropathic pain through differential regulation of ERK,
JNK and P38 MAPK. phosphorylation. 156:1–2504. 2015.
|
37
|
Ma J, Yu H, Liu J, Chen Y, Wang Q and
Xiang L: Metformin attenuates hyperalgesia and allodynia in rats
with painful diabetic neuropathy induced by streptozotocin. Eur J
Pharmacol. 764:599–606. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Mao-Ying QL, Kavelaars A, Krukowski K, Huo
XJ, Zhou W, Price TJ, Cleeland C and Heijnen CJ: The anti-diabetic
drug metformin protects against chemotherapy-induced peripheral
neuropathy in a mouse model. PLoS One. 9:e1007012014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Pop-Busui R, Lu J, Lopes N and Jones TL;
BARI 2D Investigators, : Prevalence of diabetic peripheral
neuropathy (DPN) and relation to glycemic control strategies at
baseline in the BARI 2D cohort. J Peripher Nerv Syst. 14:1–13.
2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Dominguez E, Rivat C, Pommier B, Mauborgne
A and Pohl M: JAK/STAT3 pathway is activated in spinal cord
microglia after peripheral nerve injury and contributes to
neuropathic pain development in rat. J Neurochem. 107:50–60. 2008.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Dubový P, Klusáková I, Svízenská I and
Brázda V: Satellite glial cells express IL-6 and corresponding
signal-transducing receptors in the dorsal root ganglia of rat
neuropathic pain model. Neuron Glia Biol. 6:73–83. 2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Yue W, Zheng X, Lin Y, Yang CS, Xu Q,
Carpizo D, Huang H, DiPaola RS and Tan XL: Metformin combined with
aspirin significantly inhibit pancreatic cancer cell growth in
vitro and in vivo by suppressing anti-apoptotic proteins Mcl-1 and
Bcl-2. Oncotarget. 6:21208–21224. 2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hattori Y, Hattori K and Hayashi T:
Pleiotropic benefits of metformin: Macrophage targeting its
anti-inflammatory mechanisms. Diabetes. 64:1907–1909. 2015.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Yokogami K, Wakisaka S, Avruch J and
Reeves SA: Serine phosphorylation and maximal activation of STAT3
during CNTF signaling is mediated by the rapamycin target mTOR.
Curr Biol. 10:47–50. 2000. View Article : Google Scholar : PubMed/NCBI
|
45
|
Tsuda M: Microglia in the spinal cord and
neuropathic pain. J Diabetes Investig. 7:17–26. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Nimmerjahn A, Kirchhoff F and Helmchen F:
Resting microglial cells are highly dynamic surveillants of brain
parenchyma in vivo. Science. 308:1314–1318. 2005. View Article : Google Scholar : PubMed/NCBI
|
47
|
Maixner DW, Yan X, Gao M, Yadav R and Weng
HR: Adenosine Monophosphate-activated protein kinase regulates
interleukin-1β expression and glial glutamate transporter function
in rodents with neuropathic pain. Anesthesiology. 122:1401–1413.
2015. View Article : Google Scholar : PubMed/NCBI
|
48
|
Hald A, Nedergaard S, Hansen RR, Ding M
and Heegaard AM: Differential activation of spinal cord glial cells
in murine models of neuropathic and cancer pain. Eur J Pain.
13:138–145. 2009. View Article : Google Scholar : PubMed/NCBI
|