1
|
Jiang C, Li X, Zhao H and Liu H: Long
non-coding RNAs: Potential new biomarkers for predicting tumor
invasion and metastasis. Mol Cancer. 15:622016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bradford JR, Cox A, Bernard P and Camp NJ:
Consensus analysis of whole transcriptome profiles from two breast
cancer patient cohorts reveals long non-coding RNAs associated with
intrinsic subtype and the tumour microenvironment. PLoS One.
11:e01632382016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tian X, Tian J, Tang X, Ma J and Wang S:
Long non-coding RNAs in the regulation of myeloid cells. J Hematol
Oncol. 9:992016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Etebari K, Asad S, Zhang G and Asgari S:
Identification of aedes aegypti long intergenic non-coding RNAs and
their association with wolbachia and dengue virus infection. PLoS
Negl Trop Dis. 10:e00050692016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Feng N, Ching T, Wang Y, Liu B, Lin H, Shi
O, Zhang X, Zheng M, Zheng X, Gao M, et al: Analysis of microarray
data on gene expression and methylation to identify long non-coding
RNAs in non-small cell lung cancer. Sci Rep. 6:372332016.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Fu Y, Biglia N, Wang Z, Shen Y, Risch HA,
Lu L, Canuto EM, Jia W, Katsaros D and Yu H: Long non-coding RNAs,
ASAP1-IT1, FAM215A, and LINC00472, in epithelial ovarian cancer.
Gynecol Oncol. 143:642–649. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gao Q, Ren H, Chen M, Niu Z, Tao H, Jia Y,
Zhang J and Li W: Long non-coding RNAs regulate effects of
β-crystallin B2 on mouse ovary development. Mol Med Rep.
14:4223–4231. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Guo JC, Li CQ, Wang QY, Zhao JM, Ding JY,
Li EM and Xu LY: Protein-coding genes combined with long non-coding
RNAs predict prognosis in esophageal squamous cell carcinoma
patients as a novel clinical multi-dimensional signature. Mol
Biosyst. 12:3467–3477. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hewson C, Capraro D, Burdach J, Whitaker N
and Morris KV: Extracellular vesicle associated long non-coding
RNAs functionally enhance cell viability. Noncoding RNA Res.
1:3–11. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Huang YK and Yu JC: Circulating microRNAs
and long non-coding RNAs in gastric cancer diagnosis: An update and
review. World J Gastroenterol. 21:9863–9886. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
He R, Hu Z, Wang Q, Luo W, Li J, Duan L,
Zhu YS and Luo DX: The role of long non-coding RNAs in
nasopharyngeal carcinoma: As systemic review. Oncotarget.
8:16075–16083. 2017.PubMed/NCBI
|
12
|
Shirai K, Hamada Y, Arakawa N, Yamazaki A,
Tohgi N, Aki R, Mii S, Hoffman RM and Amoh Y: Hypoxia enhances
differentiation of Hair Follicle-Associated-Pluripotent (HAP) stem
cells to cardiac-muscle cells. J Cell Biochem. 118:554–558. 2017.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Minjuan W, Jun X, Shiyun S, Sha X, Haitao
N, Yue W and Kaihong J: Hair follicle morphogenesis in the
treatment of mouse full-thickness skin defects using composite
human acellular amniotic membrane and adipose derived mesenchymal
stem cells. Stem Cells Int. 2016:82812352016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang Y, Xing Y, Guo H, Ma X and Li Y:
Immunohistochemical study of hair follicle stem cells in
regenerated hair follicles induced by Wnt10b. Int J Med Sci.
13:765–771. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Shen Q, Yu W, Fang Y, Yao M and Yang P:
Beta-catenin can induce hair follicle stem cell differentiation
into transit-amplifying cells through c-myc activation. Tissue
Cell. 49:28–34. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lien WH, Polak L, Lin M, Lay K, Zheng D
and Fuchs E: In vivo transcriptional governance of hair follicle
stem cells by canonical Wnt regulators. Nat Cell Biol. 16:179–190.
2014. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Wang Z, Pang L, Zhao H, Song L, Wang Y,
Sun Q, Guo C, Wang B, Qin X and Pan A: miR-128 regulates
differentiation of hair follicle mesenchymal stem cells into smooth
muscle cells by targeting SMAD2. Acta Histochem. 118:393–400. 2016.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Zou ZW, Ma C, Medoro L, Chen L, Wang B,
Gupta R, Liu T, Yang XZ, Chen TT, Wang RZ, et al: LncRNA ANRIL is
up-regulated in nasopharyngeal carcinoma and promotes the cancer
progression via increasing proliferation, reprograming cell glucose
metabolism and inducing side-population stem-like cancer cells.
Oncotarget. 7:61741–61754. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hu K, Zhang J and Liang M: LncRNA AK015322
promotes proliferation of spermatogonial stem cell C18-4 by acting
as a decoy for microRNA-19b-3p. In Vitro Cell Dev Biol Anim.
53:277–284. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yabut O, Domogauer J and D'Arcangelo G:
Dyrk1A overexpression inhibits proliferation and induces premature
neuronal differentiation of neural progenitor cells. J Neurosci.
30:4004–4014. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu D, Yi C, Zhang D, Zhang J and Yang M:
Inhibition of proliferation and differentiation of mesenchymal stem
cells by carboxylated carbon nanotubes. ACS Nano. 4:2185–2195.
2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Ni Y, Zhang K, Liu X, Yang T, Wang B, Fu
LAL and Zhou Y: miR-21 promotes the differentiation of hair
follicle-derived neural crest stem cells into Schwann cells. Neural
Regen Res. 9:828–836. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Cui J, Zhang F, Wang Y, Liu J, Ming X, Hou
J, Lv B, Fang S and Yu B: Macrophage migration inhibitory factor
promotes cardiac stem cell proliferation and endothelial
differentiation through the activation of the PI3K/Akt/mTOR and
AMPK pathways. Int J Mol Med. 37:1299–1309. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Sieber-Blum M and Grim M: The adult hair
follicle: Cradle for pluripotent neural crest stem cells. Birth
Defects Res C Embryo Today. 72:162–172. 2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Osawa M and Nishimura EK: Stem cells in
the mammalian hair follicle. Tanpakushitsu Kakusan Koso.
49:727–733. 2004.(In Japanese). PubMed/NCBI
|
27
|
Ma DR, Yang EN and Lee ST: A review: The
location, molecular characterisation and multipotency of hair
follicle epidermal stem cells. Ann Acad Med Singapore. 33:784–788.
2004.PubMed/NCBI
|
28
|
Kalwa M, Hänzelmann S, Otto S, Kuo CC,
Franzen J, Joussen S, Fernandez-Rebollo E, Rath B, Koch C, Hofmann
A, et al: The lncRNA HOTAIR impacts on mesenchymal stem cells via
triple helix formation. Nucleic Acids Res. 44:10631–10643. 2016.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Ito M, Liu Y, Yang Z, Nguyen J, Liang F,
Morris RJ and Cotsarelis G: Stem cells in the hair follicle bulge
contribute to wound repair but not to homeostasis of the epidermis.
Nat Med. 11:1351–1354. 2005. View
Article : Google Scholar : PubMed/NCBI
|
30
|
Lee JH, Kim BG, Ahn JM, Park HJ, Park SK,
Yoo JS, Yates JR III and Cho JY: Role of PI3K on the regulation of
BMP2-induced beta-Catenin activation in human bone marrow stem
cells. Bone. 46:1522–1532. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ojeda L, Gao J, Hooten KG, Wang E,
Thonhoff JR, Dunn TJ, Gao T and Wu P: Critical role of
PI3K/Akt/GSK3β in motoneuron specification from human neural stem
cells in response to FGF2 and EGF. PLoS One. 6:e234142011.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Deng W, Wang Y, Long X, Zhao R, Wang Z,
Liu Z, Cao S and Shi B: miR-21 reduces hydrogen peroxide-induced
apoptosis in c-kit+ cardiac stem cells in vitro through
PTEN/PI3K/Akt signaling. Oxid Med Cell Longev. 2016:53891812016.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Shao Y, Ni Z and Li Y: Wnt signal
transduction pathways and hair follicle stem cells. Sheng Wu Yi Xue
Gong Cheng Xue Za Zhi. 27:945–948. 2010.(In Chinese). PubMed/NCBI
|
34
|
Zhao J, Li H, Zhou R, Ma G, Dekker JD,
Tucker HO, Yao Z and Guo X: Foxp1 regulates the proliferation of
hair follicle stem cells in response to oxidative stress during
hair cycling. PLoS One. 10:e01316742015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Bai T, Liu F, Zou F, Zhao G, Jiang Y, Liu
L, Shi J, Hao D, Zhang Q, Zheng T, et al: Epidermal growth factor
induces proliferation of hair follicle-derived mesenchymal stem
cells through epidermal growth factor receptor-mediated activation
of ERK and AKT signaling pathways associated with upregulation of
cyclin D1 and downregulation of p16. Stem Cells Dev. 26:113–122.
2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Liu X, Song L, Liu J, Wang S, Tan X, Bai
X, Bai T, Wang Y, Li M, Song Y and Li Y: miR-18b inhibits
TGF-β1-induced differentiation of hair follicle stem cells into
smooth muscle cells by targeting SMAD2. Biochem Biophys Res Commun.
438:551–556. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Sarate RM, Chovatiya GL, Ravi V, Khade B,
Gupta S and Waghmare SK: sPLA2-IIA overexpression in mice epidermis
depletes hair follicle stem cells and induces differentiation
mediated through enhanced JNK/c-Jun activation. Stem Cells.
34:2407–2417. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yeh YH, Wang SW, Yeh YC, Hsiao HF and Li
TK: Rhapontigenin inhibits TGF-β-mediated epithelial-mesenchymal
transition via the PI3K/AKT/mTOR pathway and is not associated with
HIF-1α degradation. Oncol Rep. 35:2887–2895. 2016. View Article : Google Scholar : PubMed/NCBI
|