1
|
Kiens B: Skeletal muscle lipid metabolism
in exercise and insulin resistance. Physiol Rev. 86:205–243. 2006.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Srikanthan P, Hevener AL and Karlamangla
AS: Sarcopenia exacerbates obesity-associated insulin resistance
and dysglycemia: Findings from the National Health and Nutrition
Examination Survey III. PLoS One. 5:e108052010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Rai M, Nongthomba U and Grounds MD:
Skeletal muscle degeneration and regeneration in mice and flies.
Curr Top Dev Biol. 108:247–281. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
White RB, Bièrinx AS, Gnocchi VF and
Zammit PS: Dynamics of muscle fibre growth during postnatal mouse
development. BMC Dev Biol. 10:212010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Devlin RB and Emerson CP Jr: Coordinate
regulation of contractile protein synthesis during myoblast
differentiation. Cell. 13:599–611. 1978. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lonnerdal B and Iyer S: Lactoferrin:
Molecular structure and biological function. Annu Rev Nutr.
15:93–110. 1995. View Article : Google Scholar : PubMed/NCBI
|
7
|
Caccavo D, Sebastiani GD, Di Monaco C,
Guido F, Galeazzi M, Ferri GM, Bonomo L and Afeltra A: Increased
levels of lactoferrin in synovial fluid but not in serum from
patients with rheumatoid arthritis. Int J Clin Lab Res. 29:30–35.
1999. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hou Z, Imam MU, Ismail M, Azmi NH, Ismail
N, Ideris A and Mahmud R: Lactoferrin and ovotransferrin contribute
toward antioxidative effects of Edible Bird's Nest against hydrogen
peroxide-induced oxidative stress in human SH-SY5Y cells. Biosci
Biotechnol Biochem. 79:1570–1578. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Actor JK, Hwang SA and Kruzel ML:
Lactoferrin as a natural immune modulator. Curr Pharm Des.
15:1956–1973. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Baveye S, Elass E, Mazurier J, Spik G and
Legrand D: Lactoferrin: A multifunctional glycoprotein involved in
the modulation of the inflammatory process. Clin Chem Lab Med.
37:281–286. 1999. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yamada Y, Sato R, Kobayashi S, Hankanga C,
Inanami O, Kuwabara M, Momota Y, Tomizawa N and Yasuda J: The
antiproliferative effect of bovine lactoferrin on canine mammary
gland tumor cells. J Vet Med Sci. 70:443–448. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zemann N, Klein P, Wetzel E, Huettinger F
and Huettinger M: Lactoferrin induces growth arrest and nuclear
accumulation of Smad-2 in HeLa cells. Biochimie. 92:880–884. 2010.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Inoue H, Sakai M, Kaida Y and Kaibara K:
Blood lactoferrin release induced by running exercise in normal
volunteers: Antibacterial activity. Clin Chim Acta. 341:165–172.
2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kawakami H and Lönnerdal B: Isolation and
function of a receptor for human lactoferrin in human fetal
intestinal brush-border membranes. Am J Physiol. 261:G841–G846.
1991.PubMed/NCBI
|
15
|
Croy JE, Shin WD, Knauer MF, Knauer DJ and
Komives EA: All three LDL receptor homology regions of the LDL
receptor-related protein bind multiple ligands. Biochemistry.
42:13049–13057. 2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Legrand D, Vigiè K, Said EA, Elass E,
Masson M, Slomianny MC, Carpentier M, Briand JP, Mazurier J and
Hovanessian AG: Surface nucleolin participates in both the binding
and endocytosis of lactoferrin in target cells. Eur J Biochem.
271:303–317. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Curran CS, Demick KP and Mansfield JM:
Lactoferrin activates macrophages via TLR4-dependent and
-independent signaling pathways. Cell Immunol. 242:23–30. 2006.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Yagi M, Suzuki N, Takayama T, Arisue M,
Kodama T, Yoda Y, Otsuka K and Ito K: Effects of lactoferrin on the
differentiation of pluripotent mesenchymal cells. Cell Biol Int.
33:283–289. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lee KD: Applications of mesenchymal stem
cells: An updated review. Chang Gung Med J. 31:228–236.
2008.PubMed/NCBI
|
20
|
Kitakaze T, Sakamoto T, Kitano T, Inoue N,
Sugihara F, Harada N and Yamaji R: The collagen derived dipeptide
hydroxyprolyl-glycine promotes C2C12 myoblast differentiation and
myotube hypertrophy. Biochem Biophys Res Commun. 478:1292–1297.
2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
O'Brien J, Wilson I, Orton T and Pognan F:
Investigation of the alamar bleu (resazurin) fluorescent dye for
the assessment of mammalian cell cytotoxicity. Eur J Biochem.
267:5421–5426. 2000. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ogawa M, Yamaji R, Higashimura Y, Harada
N, Ashida H, Nakano Y and Inui H: 17β-estradiol represses myogenic
differentiation by increasing ubiquitin-specific peptidase 19
through estrogen receptor α. J Biol Chem. 286:41455–41465. 2011.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Saini J, McPhee JS, Al-Dabbagh S, Stewart
CE and Al-Shanti N: Regenerative function of immune system:
Modulation of muscle stem cells. Ageing Res Rev. 27:67–76. 2016.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Tidball JG and Villalta SA: Regulatory
interactions between muscle and the immune system during muscle
regeneration. Am J Physiol Regul Integr Comp Physiol.
298:R1173–R1187. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Novak ML, Weinheimer-Haus EM and Koh TJ:
Macrophage activation and skeletal muscle healing following
traumatic injury. J Pathol. 232:344–355. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Mebratu Y and Tesfaigzi Y: How ERK1/2
activation controls cell proliferation and cell death: Is
subcellular localization the answer? Cell Cycle. 8:1168–1175. 2009.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Jones NC, Fedorov YV, Rosenthal RS and
Olwin BB: ERK1/2 is required for myoblast proliferation but is
dispensable for muscle gene expression and cell fusion. J Cell
Physiol. 186:104–115. 2001. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ying X, Cheng S, Wang W, Lin Z, Chen Q,
Zhang W, Kou D, Shen Y, Cheng X, Peng L, et al: Effect of
lactoferrin on osteogenic differentiation of human adipose stem
cells. Int Orthop. 36:647–653. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Grey A, Banovic T, Zhu Q, Watson M, Callon
K, Palmano K, Ross J, Naot D, Reid IR and Cornish J: The
low-density lipoprotein receptor-related protein 1 is a mitogenic
receptor for lactoferrin in osteoblastic cells. Mol Endocrinol.
18:2268–2278. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Brandl N, Zemann A, Kaupe I, Marlovits S,
Huettinger P, Goldenberg H and Huettinger M: Signal transduction
and metabolism in chondrocytes is modulated by lactoferrin.
Osteoarthritis Cartilage. 18:117–125. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhang W, Guo H, Jing H, Li Y, Wang X,
Zhang H, Jiang L and Ren F: Lactoferrin stimulates osteoblast
differentiation through PKA and p38 pathways independent of
lactoferrin's receptor LRP1. J Bone Miner Res. 29:1232–1243. 2014.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Boucher P and Herz J: Signaling through
LRP1: Protection from atherosclerosis and beyond. Biochem
Pharmacol. 81:1–5. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Herz J, Clouthier DE and Hammer RE: LDL
receptor-related protein internalizes and degrades uPA-PAI-1
complexes and is essential for embryo implantation. Cell.
71:411–421. 1992. View Article : Google Scholar : PubMed/NCBI
|
34
|
Jiang R and Lönnerdal B: Apo- and
holo-lactoferrin stimulate proliferation of mouse crypt cells but
through different cellular signaling pathways. Int J Biochem Cell
Biol. 44:91–100. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Qiu W, Wang G, Sun X, Ye J, Wei F, Shi X
and Lv G: The involvement of cell surface nucleolin in the
initiation of CCR6 signaling in human hepatocellular carcinoma. Med
Oncol. 32:752015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Qi J, Li H, Liu N, Xing Y, Zhou G, Wu Y,
Liu Y, Chen W, Yue J, Han B, et al: The implications and mechanisms
of the extra-nuclear nucleolin in the esophageal squamous cell
carcinomas. Med Oncol. 32:452015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhao Y, Zhang C, Wei X, Li P, Cui Y, Qin
Y, Wei X, Jin M, Kohama K and Gao Y: Heat shock protein 60
stimulates the migration of vascular smooth muscle cells via
Toll-like receptor 4 and ERK MAPK activation. Sci Rep. 5:153522015.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Yagi M, Suzuki N, Takayama T, Arisue M,
Kodama T, Yoda Y, Numasaki H, Otsuka K and Ito K: Lactoferrin
suppress the adipogenic differentiation of MC3T3-G2/PA6 cells. J
Oral Sci. 50:419–425. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Majka G, Śpiewak K, Kurpiewska K, Heczko
P, Stochel G, Strus M and Brindell M: A high-throughput method for
the quantification of iron saturation in lactoferrin preparations.
Anal Bioanal Chem. 405:5191–5200. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Oguchi S, Wakler WA and Sanderson IR: Iron
saturation alters the effect of lactoferrin on the proliferation
and differentiation of human enterocytes (Caco-2 cells). Biol
Beonate. 67:330–339. 1995.
|
41
|
Cornish J, Palmano K, Callon KE, Watson M,
Lin JM, Valenti P, Naot D, Grey AB and Reid IR: Lactoferrin and
bone; structure-activity relationshiops. Biochem Cell Biol.
84:297–302. 2006. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ryu M, Nogami A, Kitakaze T, Harada N,
Suzuki AY and Yamaji R: Lactoferrin induces tropoelastin expression
by activating the lipoprotein receptor-related protein 1-mediated
phosphatidylinositol 3-kinase/Akt pathway in human dermal
fibroblasts. Cell Biol Int. 41:1325–1334. 2017. View Article : Google Scholar : PubMed/NCBI
|